LevenbergMarquardt class
The Levenberg–Marquardt algorithm, also known as the damped least-squares method, is used to solve non-linear least squares problems.
See https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm.
Constructors
- 
          LevenbergMarquardt(ParametrizedUnaryFunction<
double> parametrizedFunction, {double? initialValue, dynamic initialValues, double? minValue, dynamic minValues, double? maxValue, dynamic maxValues, double gradientDifference = 1e-1, dynamic gradientDifferences, double damping = 1e-2, double dampingStepDown = 9.0, double dampingStepUp = 11.0, bool centralDifference = false, double improvementThreshold = 1e-3, double errorTolerance = 1e-7, int maxIterations = 100}) 
Properties
- centralDifference → bool
 - 
  If true the Jacobian matrix is approximated by central differences
otherwise by forward differences.
  final
 - damping → double
 - 
  Small values of the damping factor result in a Gauss-Newton update and
large values in a gradient descent update.
  final
 - dampingStepDown → double
 - 
  Factor to reduce the damping when there is not an improvement when
updating parameters.
  final
 - dampingStepUp → double
 - 
  Factor to increase the damping when there is an improvement when updating
parameters.
  final
 - errorTolerance → double
 - 
  Minimum uncertainty allowed for each point.
  final
 - 
  gradientDifferences
  → Vector<
double>  - 
  The step size to approximate each parameter in the Jacobian matrix.
  final
 - hashCode → int
 - 
  The hash code for this object.
  no setterinherited
 - improvementThreshold → double
 - 
  The threshold to define an improvement through an update of parameters.
  final
 - 
  initialValues
  → Vector<
double>  - 
  A vector of initial parameter values.
  final
 - maxIterations → int
 - 
  Maximum of allowed iterations
  final
 - 
  maxValues
  → Vector<
double>  - 
  Maximum allowed values for parameters.
  final
 - 
  minValues
  → Vector<
double>  - 
  Minimum allowed values for parameters.
  final
 - 
  parametrizedFunction
  → ParametrizedUnaryFunction<
double>  - 
  A parametrized function
  final
 - runtimeType → Type
 - 
  A representation of the runtime type of the object.
  no setterinherited
 
Methods
- 
  fit(
{required Vector< double> xs, required Vector<double> ys, double weight = 1.0, Vector<double> ? weights}) → LevenbergMarquardtResult - 
  Fits a list of data points to the configured model.
  override
 - 
  noSuchMethod(
Invocation invocation) → dynamic  - 
  Invoked when a nonexistent method or property is accessed.
  inherited
 - 
  toString(
) → String  - 
  A string representation of this object.
  inherited
 
Operators
- 
  operator ==(
Object other) → bool  - 
  The equality operator.
  inherited