ActiveLearningConfig class final

Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.

Inheritance
  • Object
  • ProtoMessage
  • ActiveLearningConfig

Constructors

ActiveLearningConfig({int? maxDataItemCount, int? maxDataItemPercentage, SampleConfig? sampleConfig, TrainingConfig? trainingConfig})
ActiveLearningConfig.fromJson(Map<String, dynamic> json)
factory

Properties

hashCode int
The hash code for this object.
no setterinherited
maxDataItemCount int?
Max number of human labeled DataItems.
final
maxDataItemPercentage int?
Max percent of total DataItems for human labeling.
final
qualifiedName String
The fully qualified name of this message, i.e., google.protobuf.Duration or google.rpc.ErrorInfo.
finalinherited
runtimeType Type
A representation of the runtime type of the object.
no setterinherited
sampleConfig SampleConfig?
Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
final
trainingConfig TrainingConfig?
CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.
final

Methods

noSuchMethod(Invocation invocation) → dynamic
Invoked when a nonexistent method or property is accessed.
inherited
toJson() Object
override
toString() String
A string representation of this object.
override

Operators

operator ==(Object other) bool
The equality operator.
inherited

Constants

fullyQualifiedName → const String