aiplatform library

The Google Cloud client for the Vertex AI API.

Train high-quality custom machine learning models with minimal machine learning expertise and effort.

Classes

AcceleratorType
Represents a hardware accelerator type.
AcceptPublisherModelEulaRequest
Request message for ModelGardenService.AcceptPublisherModelEula.
ActiveLearningConfig
Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
AddContextArtifactsAndExecutionsRequest
Request message for MetadataService.AddContextArtifactsAndExecutions.
AddContextArtifactsAndExecutionsResponse
Response message for MetadataService.AddContextArtifactsAndExecutions.
AddContextChildrenRequest
Request message for MetadataService.AddContextChildren.
AddContextChildrenResponse
Response message for MetadataService.AddContextChildren.
AddExecutionEventsRequest
Request message for MetadataService.AddExecutionEvents.
AddExecutionEventsResponse
Response message for MetadataService.AddExecutionEvents.
AddTrialMeasurementRequest
Request message for VizierService.AddTrialMeasurement.
AggregationOutput
The aggregation result for the entire dataset and all metrics.
AggregationResult
The aggregation result for a single metric.
Annotation
Used to assign specific AnnotationSpec to a particular area of a DataItem or the whole part of the DataItem.
AnnotationSpec
Identifies a concept with which DataItems may be annotated with.
ApiAuth
The generic reusable api auth config.
ApiAuth_ApiKeyConfig
The API secret.
AppendEventRequest
Request message for SessionService.AppendEvent.
AppendEventResponse
Response message for SessionService.AppendEvent.
Artifact
Instance of a general artifact.
Artifact_State
Describes the state of the Artifact.
ArtifactTypeSchema
The definition of a artifact type in MLMD.
AssembleDataOperationMetadata
Runtime operation information for DatasetService.AssembleData.
AssembleDataRequest
Request message for DatasetService.AssembleData. Used only for MULTIMODAL datasets.
AssembleDataResponse
Response message for DatasetService.AssembleData.
AssessDataOperationMetadata
Runtime operation information for DatasetService.AssessData.
AssessDataRequest
Request message for DatasetService.AssessData. Used only for MULTIMODAL datasets.
AssessDataRequest_BatchPredictionResourceUsageAssessmentConfig
Configuration for the batch prediction resource usage assessment.
AssessDataRequest_BatchPredictionValidationAssessmentConfig
Configuration for the batch prediction validation assessment.
AssessDataRequest_TuningResourceUsageAssessmentConfig
Configuration for the tuning resource usage assessment.
AssessDataRequest_TuningValidationAssessmentConfig
Configuration for the tuning validation assessment.
AssessDataRequest_TuningValidationAssessmentConfig_DatasetUsage
The dataset usage (e.g. training/validation).
AssessDataResponse
Response message for DatasetService.AssessData.
AssessDataResponse_BatchPredictionResourceUsageAssessmentResult
The result of the batch prediction resource usage assessment.
AssessDataResponse_BatchPredictionValidationAssessmentResult
The result of the batch prediction validation assessment.
AssessDataResponse_TuningResourceUsageAssessmentResult
The result of the tuning resource usage assessment.
AssessDataResponse_TuningValidationAssessmentResult
The result of the tuning validation assessment.
AssignNotebookRuntimeOperationMetadata
Metadata information for NotebookService.AssignNotebookRuntime.
AssignNotebookRuntimeRequest
Request message for NotebookService.AssignNotebookRuntime.
Attribution
Attribution that explains a particular prediction output.
AugmentPromptRequest
Request message for AugmentPrompt.
AugmentPromptRequest_Model
Metadata of the backend deployed model.
AugmentPromptResponse
Response message for AugmentPrompt.
AuthConfig
Auth configuration to run the extension.
AuthConfig_ApiKeyConfig
Config for authentication with API key.
AuthConfig_GoogleServiceAccountConfig
Config for Google Service Account Authentication.
AuthConfig_HttpBasicAuthConfig
Config for HTTP Basic Authentication.
AuthConfig_OauthConfig
Config for user oauth.
AuthConfig_OidcConfig
Config for user OIDC auth.
AuthType
Type of Auth.
AutomaticResources
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration. Each Model supporting these resources documents its specific guidelines.
AutoraterConfig
The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset.
AutoscalingMetricSpec
The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.
AvroSource
The storage details for Avro input content.
BatchCancelPipelineJobsOperationMetadata
Runtime operation information for PipelineService.BatchCancelPipelineJobs.
BatchCancelPipelineJobsRequest
Request message for PipelineService.BatchCancelPipelineJobs.
BatchCancelPipelineJobsResponse
Response message for PipelineService.BatchCancelPipelineJobs.
BatchCreateFeaturesOperationMetadata
Details of operations that perform batch create Features.
BatchCreateFeaturesRequest
Request message for FeaturestoreService.BatchCreateFeatures. Request message for FeatureRegistryService.BatchCreateFeatures.
BatchCreateFeaturesResponse
Response message for FeaturestoreService.BatchCreateFeatures.
BatchCreateTensorboardRunsRequest
Request message for TensorboardService.BatchCreateTensorboardRuns.
BatchCreateTensorboardRunsResponse
Response message for TensorboardService.BatchCreateTensorboardRuns.
BatchCreateTensorboardTimeSeriesRequest
Request message for TensorboardService.BatchCreateTensorboardTimeSeries.
BatchCreateTensorboardTimeSeriesResponse
Response message for TensorboardService.BatchCreateTensorboardTimeSeries.
BatchDedicatedResources
A description of resources that are used for performing batch operations, are dedicated to a Model, and need manual configuration.
BatchDeletePipelineJobsRequest
Request message for PipelineService.BatchDeletePipelineJobs.
BatchDeletePipelineJobsResponse
Response message for PipelineService.BatchDeletePipelineJobs.
BatchImportEvaluatedAnnotationsRequest
Request message for ModelService.BatchImportEvaluatedAnnotations
BatchImportEvaluatedAnnotationsResponse
Response message for ModelService.BatchImportEvaluatedAnnotations
BatchImportModelEvaluationSlicesRequest
Request message for ModelService.BatchImportModelEvaluationSlices
BatchImportModelEvaluationSlicesResponse
Response message for ModelService.BatchImportModelEvaluationSlices
BatchMigrateResourcesOperationMetadata
Runtime operation information for MigrationService.BatchMigrateResources.
BatchMigrateResourcesOperationMetadata_PartialResult
Represents a partial result in batch migration operation for one MigrateResourceRequest.
BatchMigrateResourcesRequest
Request message for MigrationService.BatchMigrateResources.
BatchMigrateResourcesResponse
Response message for MigrationService.BatchMigrateResources.
BatchPredictionJob
A job that uses a Model to produce predictions on multiple google.cloud.aiplatform.v1beta1.BatchPredictionJob.input_config. If predictions for significant portion of the instances fail, the job may finish without attempting predictions for all remaining instances.
BatchPredictionJob_InputConfig
Configures the input to BatchPredictionJob. See Model.supported_input_storage_formats for Model's supported input formats, and how instances should be expressed via any of them.
BatchPredictionJob_InstanceConfig
Configuration defining how to transform batch prediction input instances to the instances that the Model accepts.
BatchPredictionJob_OutputConfig
Configures the output of BatchPredictionJob. See Model.supported_output_storage_formats for supported output formats, and how predictions are expressed via any of them.
BatchPredictionJob_OutputInfo
Further describes this job's output. Supplements output_config.
BatchReadFeatureValuesOperationMetadata
Details of operations that batch reads Feature values.
BatchReadFeatureValuesRequest
Request message for FeaturestoreService.BatchReadFeatureValues.
BatchReadFeatureValuesRequest_EntityTypeSpec
Selects Features of an EntityType to read values of and specifies read settings.
BatchReadFeatureValuesRequest_PassThroughField
Describe pass-through fields in read_instance source.
BatchReadFeatureValuesResponse
Response message for FeaturestoreService.BatchReadFeatureValues.
BatchReadTensorboardTimeSeriesDataRequest
Request message for TensorboardService.BatchReadTensorboardTimeSeriesData.
BatchReadTensorboardTimeSeriesDataResponse
Response message for TensorboardService.BatchReadTensorboardTimeSeriesData.
BigQueryDestination
The BigQuery location for the output content.
BigQuerySource
The BigQuery location for the input content.
BleuInput
Input for bleu metric.
BleuInstance
Spec for bleu instance.
BleuMetricValue
Bleu metric value for an instance.
BleuResults
Results for bleu metric.
BleuSpec
Spec for bleu score metric - calculates the precision of n-grams in the prediction as compared to reference - returns a score ranging between 0 to 1.
Blob
Content blob.
BlurBaselineConfig
Config for blur baseline.
BoolArray
A list of boolean values.
CachedContent
A resource used in LLM queries for users to explicitly specify what to cache and how to cache.
CachedContent_UsageMetadata
Metadata on the usage of the cached content.
CancelBatchPredictionJobRequest
Request message for JobService.CancelBatchPredictionJob.
CancelCustomJobRequest
Request message for JobService.CancelCustomJob.
CancelDataLabelingJobRequest
Request message for JobService.CancelDataLabelingJob.
CancelHyperparameterTuningJobRequest
Request message for JobService.CancelHyperparameterTuningJob.
CancelNasJobRequest
Request message for JobService.CancelNasJob.
CancelPipelineJobRequest
Request message for PipelineService.CancelPipelineJob.
CancelTrainingPipelineRequest
Request message for PipelineService.CancelTrainingPipeline.
CancelTuningJobRequest
Request message for GenAiTuningService.CancelTuningJob.
Candidate
A response candidate generated from the model.
Candidate_FinishReason
The reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.
ChatCompletionsRequest
Request message for PredictionService.ChatCompletions
Checkpoint
Describes the machine learning model version checkpoint.
CheckPublisherModelEulaAcceptanceRequest
Request message for ModelGardenService.CheckPublisherModelEula.
CheckTrialEarlyStoppingStateMetatdata
This message will be placed in the metadata field of a google.longrunning.Operation associated with a CheckTrialEarlyStoppingState request.
CheckTrialEarlyStoppingStateRequest
Request message for VizierService.CheckTrialEarlyStoppingState.
CheckTrialEarlyStoppingStateResponse
Response message for VizierService.CheckTrialEarlyStoppingState.
Citation
Source attributions for content.
CitationMetadata
A collection of source attributions for a piece of content.
Claim
Claim that is extracted from the input text and facts that support it.
ClientConnectionConfig
Configurations (e.g. inference timeout) that are applied on your endpoints.
CodeExecutionResult
Result of executing the ExecutableCode.
CodeExecutionResult_Outcome
Enumeration of possible outcomes of the code execution.
CoherenceInput
Input for coherence metric.
CoherenceInstance
Spec for coherence instance.
CoherenceResult
Spec for coherence result.
CoherenceSpec
Spec for coherence score metric.
ColabImage
Colab image of the runtime.
CometInput
Input for Comet metric.
CometInstance
Spec for Comet instance - The fields used for evaluation are dependent on the comet version.
CometResult
Spec for Comet result - calculates the comet score for the given instance using the version specified in the spec.
CometSpec
Spec for Comet metric.
CometSpec_CometVersion
Comet version options.
CompleteTrialRequest
Request message for VizierService.CompleteTrial.
CompletionStats
Success and error statistics of processing multiple entities (for example, DataItems or structured data rows) in batch.
ComputeTokensRequest
Request message for ComputeTokens RPC call.
ComputeTokensResponse
Response message for ComputeTokens RPC call.
ContainerRegistryDestination
The Container Registry location for the container image.
ContainerSpec
The spec of a Container.
Content
The base structured datatype containing multi-part content of a message.
ContentMap
Map of placeholder in metric prompt template to contents of model input.
ContentMap_Contents
Repeated Content type.
ContentsExample
A single example of a conversation with the model.
ContentsExample_ExpectedContent
A single step of the expected output.
Context
Instance of a general context.
CopyModelOperationMetadata
Details of ModelService.CopyModel operation.
CopyModelRequest
Request message for ModelService.CopyModel.
CopyModelResponse
Response message of ModelService.CopyModel operation.
CorpusStatus
RagCorpus status.
CorpusStatus_State
RagCorpus life state.
CorroborateContentRequest
Request message for CorroborateContent.
CorroborateContentRequest_Parameters
Parameters that can be overrided per request.
CorroborateContentResponse
Response message for CorroborateContent.
CountTokensRequest
Request message for PredictionService.CountTokens.
CountTokensResponse
Response message for PredictionService.CountTokens.
CreateArtifactRequest
Request message for MetadataService.CreateArtifact.
CreateBatchPredictionJobRequest
Request message for JobService.CreateBatchPredictionJob.
CreateCachedContentRequest
Request message for GenAiCacheService.CreateCachedContent.
CreateContextRequest
Request message for MetadataService.CreateContext.
CreateCustomJobRequest
Request message for JobService.CreateCustomJob.
CreateDataLabelingJobRequest
Request message for JobService.CreateDataLabelingJob.
CreateDatasetOperationMetadata
Runtime operation information for DatasetService.CreateDataset.
CreateDatasetRequest
Request message for DatasetService.CreateDataset.
CreateDatasetVersionOperationMetadata
Runtime operation information for DatasetService.CreateDatasetVersion.
CreateDatasetVersionRequest
Request message for DatasetService.CreateDatasetVersion.
CreateDeploymentResourcePoolOperationMetadata
Runtime operation information for CreateDeploymentResourcePool method.
CreateDeploymentResourcePoolRequest
Request message for CreateDeploymentResourcePool method.
CreateEndpointOperationMetadata
Runtime operation information for EndpointService.CreateEndpoint.
CreateEndpointRequest
Request message for EndpointService.CreateEndpoint.
CreateEntityTypeOperationMetadata
Details of operations that perform create EntityType.
CreateEntityTypeRequest
Request message for FeaturestoreService.CreateEntityType.
CreateExampleStoreOperationMetadata
Details of ExampleStoreService.CreateExampleStore operation.
CreateExampleStoreRequest
Request message for ExampleStoreService.CreateExampleStore.
CreateExecutionRequest
Request message for MetadataService.CreateExecution.
CreateFeatureGroupOperationMetadata
Details of operations that perform create FeatureGroup.
CreateFeatureGroupRequest
Request message for FeatureRegistryService.CreateFeatureGroup.
CreateFeatureMonitorJobRequest
Request message for FeatureRegistryService.CreateFeatureMonitorJobRequest.
CreateFeatureMonitorOperationMetadata
Details of operations that perform create FeatureMonitor.
CreateFeatureMonitorRequest
Request message for FeatureRegistryService.CreateFeatureMonitorRequest.
CreateFeatureOnlineStoreOperationMetadata
Details of operations that perform create FeatureOnlineStore.
CreateFeatureOnlineStoreRequest
Request message for FeatureOnlineStoreAdminService.CreateFeatureOnlineStore.
CreateFeatureOperationMetadata
Details of operations that perform create Feature.
CreateFeatureRequest
Request message for FeaturestoreService.CreateFeature. Request message for FeatureRegistryService.CreateFeature.
CreateFeaturestoreOperationMetadata
Details of operations that perform create Featurestore.
CreateFeaturestoreRequest
Request message for FeaturestoreService.CreateFeaturestore.
CreateFeatureViewOperationMetadata
Details of operations that perform create FeatureView.
CreateFeatureViewRequest
Request message for FeatureOnlineStoreAdminService.CreateFeatureView.
CreateHyperparameterTuningJobRequest
Request message for JobService.CreateHyperparameterTuningJob.
CreateIndexEndpointOperationMetadata
Runtime operation information for IndexEndpointService.CreateIndexEndpoint.
CreateIndexEndpointRequest
Request message for IndexEndpointService.CreateIndexEndpoint.
CreateIndexOperationMetadata
Runtime operation information for IndexService.CreateIndex.
CreateIndexRequest
Request message for IndexService.CreateIndex.
CreateMemoryOperationMetadata
Details of MemoryBankService.CreateMemory operation.
CreateMemoryRequest
Request message for MemoryBankService.CreateMemory.
CreateMetadataSchemaRequest
Request message for MetadataService.CreateMetadataSchema.
CreateMetadataStoreOperationMetadata
Details of operations that perform MetadataService.CreateMetadataStore.
CreateMetadataStoreRequest
Request message for MetadataService.CreateMetadataStore.
CreateModelDeploymentMonitoringJobRequest
Request message for JobService.CreateModelDeploymentMonitoringJob.
CreateModelMonitoringJobRequest
Request message for ModelMonitoringService.CreateModelMonitoringJob.
CreateModelMonitorOperationMetadata
Runtime operation information for ModelMonitoringService.CreateModelMonitor.
CreateModelMonitorRequest
Request message for ModelMonitoringService.CreateModelMonitor.
CreateNasJobRequest
Request message for JobService.CreateNasJob.
CreateNotebookExecutionJobOperationMetadata
Metadata information for NotebookService.CreateNotebookExecutionJob.
CreateNotebookExecutionJobRequest
Request message for NotebookService.CreateNotebookExecutionJob
CreateNotebookRuntimeTemplateOperationMetadata
Metadata information for NotebookService.CreateNotebookRuntimeTemplate.
CreateNotebookRuntimeTemplateRequest
Request message for NotebookService.CreateNotebookRuntimeTemplate.
CreatePersistentResourceOperationMetadata
Details of operations that perform create PersistentResource.
CreatePersistentResourceRequest
Request message for PersistentResourceService.CreatePersistentResource.
CreatePipelineJobRequest
Request message for PipelineService.CreatePipelineJob.
CreateRagCorpusOperationMetadata
Runtime operation information for VertexRagDataService.CreateRagCorpus.
CreateRagCorpusRequest
Request message for VertexRagDataService.CreateRagCorpus.
CreateReasoningEngineOperationMetadata
Details of ReasoningEngineService.CreateReasoningEngine operation.
CreateReasoningEngineRequest
Request message for ReasoningEngineService.CreateReasoningEngine.
CreateRegistryFeatureOperationMetadata
Details of operations that perform create FeatureGroup.
CreateScheduleRequest
Request message for ScheduleService.CreateSchedule.
CreateSessionOperationMetadata
Metadata associated with the SessionService.CreateSession operation.
CreateSessionRequest
Request message for SessionService.CreateSession.
CreateSpecialistPoolOperationMetadata
Runtime operation information for SpecialistPoolService.CreateSpecialistPool.
CreateSpecialistPoolRequest
Request message for SpecialistPoolService.CreateSpecialistPool.
CreateStudyRequest
Request message for VizierService.CreateStudy.
CreateTensorboardExperimentRequest
Request message for TensorboardService.CreateTensorboardExperiment.
CreateTensorboardOperationMetadata
Details of operations that perform create Tensorboard.
CreateTensorboardRequest
Request message for TensorboardService.CreateTensorboard.
CreateTensorboardRunRequest
Request message for TensorboardService.CreateTensorboardRun.
CreateTensorboardTimeSeriesRequest
Request message for TensorboardService.CreateTensorboardTimeSeries.
CreateTrainingPipelineRequest
Request message for PipelineService.CreateTrainingPipeline.
CreateTrialRequest
Request message for VizierService.CreateTrial.
CreateTuningJobRequest
Request message for GenAiTuningService.CreateTuningJob.
CsvDestination
The storage details for CSV output content.
CsvSource
The storage details for CSV input content.
CustomJob
Represents a job that runs custom workloads such as a Docker container or a Python package. A CustomJob can have multiple worker pools and each worker pool can have its own machine and input spec. A CustomJob will be cleaned up once the job enters terminal state (failed or succeeded).
CustomJobSpec
Represents the spec of a CustomJob.
CustomOutput
Spec for custom output.
CustomOutputFormatConfig
Spec for custom output format configuration.
DataItem
A piece of data in a Dataset. Could be an image, a video, a document or plain text.
DataItemView
A container for a single DataItem and Annotations on it.
DataLabelingJob
DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset:
Dataset
A collection of DataItems and Annotations on them.
DatasetDistribution
Distribution computed over a tuning dataset.
DatasetDistribution_DistributionBucket
Dataset bucket used to create a histogram for the distribution given a population of values.
DatasetService
The service that manages Vertex AI Dataset and its child resources.
DatasetStats
Statistics computed over a tuning dataset.
DatasetVersion
Describes the dataset version.
DedicatedResources
A description of resources that are dedicated to a DeployedModel or DeployedIndex, and that need a higher degree of manual configuration.
DedicatedResources_ScaleToZeroSpec
Specification for scale-to-zero feature.
DeleteArtifactRequest
Request message for MetadataService.DeleteArtifact.
DeleteBatchPredictionJobRequest
Request message for JobService.DeleteBatchPredictionJob.
DeleteCachedContentRequest
Request message for GenAiCacheService.DeleteCachedContent.
DeleteContextRequest
Request message for MetadataService.DeleteContext.
DeleteCustomJobRequest
Request message for JobService.DeleteCustomJob.
DeleteDataLabelingJobRequest
Request message for JobService.DeleteDataLabelingJob.
DeleteDatasetRequest
Request message for DatasetService.DeleteDataset.
DeleteDatasetVersionRequest
Request message for DatasetService.DeleteDatasetVersion.
DeleteDeploymentResourcePoolRequest
Request message for DeleteDeploymentResourcePool method.
DeleteEndpointRequest
Request message for EndpointService.DeleteEndpoint.
DeleteEntityTypeRequest
Request message for FeaturestoreService.DeleteEntityTypes.
DeleteExampleStoreOperationMetadata
Details of ExampleStoreService.DeleteExampleStore operation.
DeleteExampleStoreRequest
Request message for ExampleStoreService.DeleteExampleStore.
DeleteExecutionRequest
Request message for MetadataService.DeleteExecution.
DeleteExtensionRequest
Request message for ExtensionRegistryService.DeleteExtension.
DeleteFeatureGroupRequest
Request message for FeatureRegistryService.DeleteFeatureGroup.
DeleteFeatureMonitorRequest
Request message for FeatureRegistryService.DeleteFeatureMonitor.
DeleteFeatureOnlineStoreRequest
Request message for FeatureOnlineStoreAdminService.DeleteFeatureOnlineStore.
DeleteFeatureRequest
Request message for FeaturestoreService.DeleteFeature. Request message for FeatureRegistryService.DeleteFeature.
DeleteFeaturestoreRequest
Request message for FeaturestoreService.DeleteFeaturestore.
DeleteFeatureValuesOperationMetadata
Details of operations that delete Feature values.
DeleteFeatureValuesRequest
Request message for FeaturestoreService.DeleteFeatureValues.
DeleteFeatureValuesRequest_SelectEntity
Message to select entity. If an entity id is selected, all the feature values corresponding to the entity id will be deleted, including the entityId.
DeleteFeatureValuesRequest_SelectTimeRangeAndFeature
Message to select time range and feature. Values of the selected feature generated within an inclusive time range will be deleted. Using this option permanently deletes the feature values from the specified feature IDs within the specified time range. This might include data from the online storage. If you want to retain any deleted historical data in the online storage, you must re-ingest it.
DeleteFeatureValuesResponse
Response message for FeaturestoreService.DeleteFeatureValues.
DeleteFeatureValuesResponse_SelectEntity
Response message if the request uses the SelectEntity option.
DeleteFeatureValuesResponse_SelectTimeRangeAndFeature
Response message if the request uses the SelectTimeRangeAndFeature option.
DeleteFeatureViewRequest
Request message for FeatureOnlineStoreAdminService.DeleteFeatureViews.
DeleteHyperparameterTuningJobRequest
Request message for JobService.DeleteHyperparameterTuningJob.
DeleteIndexEndpointRequest
Request message for IndexEndpointService.DeleteIndexEndpoint.
DeleteIndexRequest
Request message for IndexService.DeleteIndex.
DeleteMemoryOperationMetadata
Details of MemoryBankService.DeleteMemory operation.
DeleteMemoryRequest
Request message for MemoryBankService.DeleteMemory.
DeleteMetadataStoreOperationMetadata
Details of operations that perform MetadataService.DeleteMetadataStore.
DeleteMetadataStoreRequest
Request message for MetadataService.DeleteMetadataStore.
DeleteModelDeploymentMonitoringJobRequest
Request message for JobService.DeleteModelDeploymentMonitoringJob.
DeleteModelMonitoringJobRequest
Request message for ModelMonitoringService.DeleteModelMonitoringJob.
DeleteModelMonitorRequest
Request message for ModelMonitoringService.DeleteModelMonitor.
DeleteModelRequest
Request message for ModelService.DeleteModel.
DeleteModelVersionRequest
Request message for ModelService.DeleteModelVersion.
DeleteNasJobRequest
Request message for JobService.DeleteNasJob.
DeleteNotebookExecutionJobRequest
Request message for NotebookService.DeleteNotebookExecutionJob
DeleteNotebookRuntimeRequest
Request message for NotebookService.DeleteNotebookRuntime.
DeleteNotebookRuntimeTemplateRequest
Request message for NotebookService.DeleteNotebookRuntimeTemplate.
DeleteOperationMetadata
Details of operations that perform deletes of any entities.
DeletePersistentResourceRequest
Request message for PersistentResourceService.DeletePersistentResource.
DeletePipelineJobRequest
Request message for PipelineService.DeletePipelineJob.
DeleteRagCorpusRequest
Request message for VertexRagDataService.DeleteRagCorpus.
DeleteRagFileRequest
Request message for VertexRagDataService.DeleteRagFile.
DeleteReasoningEngineRequest
Request message for ReasoningEngineService.DeleteReasoningEngine.
DeleteSavedQueryRequest
Request message for DatasetService.DeleteSavedQuery.
DeleteScheduleRequest
Request message for ScheduleService.DeleteSchedule.
DeleteSessionRequest
Request message for SessionService.DeleteSession.
DeleteSpecialistPoolRequest
Request message for SpecialistPoolService.DeleteSpecialistPool.
DeleteStudyRequest
Request message for VizierService.DeleteStudy.
DeleteTensorboardExperimentRequest
Request message for TensorboardService.DeleteTensorboardExperiment.
DeleteTensorboardRequest
Request message for TensorboardService.DeleteTensorboard.
DeleteTensorboardRunRequest
Request message for TensorboardService.DeleteTensorboardRun.
DeleteTensorboardTimeSeriesRequest
Request message for TensorboardService.DeleteTensorboardTimeSeries.
DeleteTrainingPipelineRequest
Request message for PipelineService.DeleteTrainingPipeline.
DeleteTrialRequest
Request message for VizierService.DeleteTrial.
DeployedIndex
A deployment of an Index. IndexEndpoints contain one or more DeployedIndexes.
DeployedIndexAuthConfig
Used to set up the auth on the DeployedIndex's private endpoint.
DeployedIndexAuthConfig_AuthProvider
Configuration for an authentication provider, including support for JSON Web Token (JWT).
DeployedIndexRef
Points to a DeployedIndex.
DeployedModel
A deployment of a Model. Endpoints contain one or more DeployedModels.
DeployedModel_Status
Runtime status of the deployed model.
DeployedModelRef
Points to a DeployedModel.
DeployIndexOperationMetadata
Runtime operation information for IndexEndpointService.DeployIndex.
DeployIndexRequest
Request message for IndexEndpointService.DeployIndex.
DeployIndexResponse
Response message for IndexEndpointService.DeployIndex.
DeploymentResourcePool
A description of resources that can be shared by multiple DeployedModels, whose underlying specification consists of a DedicatedResources.
DeploymentResourcePoolService
A service that manages the DeploymentResourcePool resource.
DeploymentStage
Stage field indicating the current progress of a deployment.
DeployModelOperationMetadata
Runtime operation information for EndpointService.DeployModel.
DeployModelRequest
Request message for EndpointService.DeployModel.
DeployModelResponse
Response message for EndpointService.DeployModel.
DeployOperationMetadata
Runtime operation information for ModelGardenService.Deploy.
DeployPublisherModelOperationMetadata
Runtime operation information for ModelGardenService.DeployPublisherModel.
DeployPublisherModelRequest
Request message for ModelGardenService.DeployPublisherModel.
DeployPublisherModelResponse
Response message for ModelGardenService.DeployPublisherModel.
DeployRequest
Request message for ModelGardenService.Deploy.
DeployRequest_CustomModel
The custom model to deploy from model weights in a Google Cloud Storage URI or Model Registry model.
DeployRequest_DeployConfig
The deploy config to use for the deployment.
DeployRequest_EndpointConfig
The endpoint config to use for the deployment.
DeployRequest_ModelConfig
The model config to use for the deployment.
DeployResponse
Response message for ModelGardenService.Deploy.
DestinationFeatureSetting
DirectPredictRequest
Request message for PredictionService.DirectPredict.
DirectPredictResponse
Response message for PredictionService.DirectPredict.
DirectRawPredictRequest
Request message for PredictionService.DirectRawPredict.
DirectRawPredictResponse
Response message for PredictionService.DirectRawPredict.
DirectUploadSource
The input content is encapsulated and uploaded in the request.
DiskSpec
Represents the spec of disk options.
DistillationDataStats
Statistics computed for datasets used for distillation.
DistillationHyperParameters
Hyperparameters for Distillation.
DistillationSpec
Tuning Spec for Distillation.
DnsPeeringConfig
DNS peering configuration. These configurations are used to create DNS peering zones in the Vertex tenant project VPC, enabling resolution of records within the specified domain hosted in the target network's Cloud DNS.
DoubleArray
A list of double values.
DynamicRetrievalConfig
Describes the options to customize dynamic retrieval.
DynamicRetrievalConfig_Mode
The mode of the predictor to be used in dynamic retrieval.
EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-level resource.
Endpoint
Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations.
EndpointService
A service for managing Vertex AI's Endpoints.
EnterpriseWebSearch
Tool to search public web data, powered by Vertex AI Search and Sec4 compliance.
EntityIdSelector
Selector for entityId. Getting ids from the given source.
EntityType
An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.
EnvVar
Represents an environment variable present in a Container or Python Module.
ErrorAnalysisAnnotation
Model error analysis for each annotation.
ErrorAnalysisAnnotation_AttributedItem
Attributed items for a given annotation, typically representing neighbors from the training sets constrained by the query type.
ErrorAnalysisAnnotation_QueryType
The query type used for finding the attributed items.
EvaluatedAnnotation
True positive, false positive, or false negative.
EvaluatedAnnotation_EvaluatedAnnotationType
Describes the type of the EvaluatedAnnotation. The type is determined
EvaluatedAnnotationExplanation
Explanation result of the prediction produced by the Model.
EvaluateDatasetOperationMetadata
Operation metadata for Dataset Evaluation.
EvaluateDatasetRequest
Request message for EvaluationService.EvaluateDataset.
EvaluateDatasetResponse
Response in LRO for EvaluationService.EvaluateDataset.
EvaluateDatasetRun
Evaluate Dataset Run Result for Tuning Job.
EvaluateInstancesRequest
Request message for EvaluationService.EvaluateInstances.
EvaluateInstancesResponse
Response message for EvaluationService.EvaluateInstances.
EvaluationConfig
Evaluation Config for Tuning Job.
EvaluationDataset
The dataset used for evaluation.
EvaluationService
Vertex AI Online Evaluation Service.
Event
An edge describing the relationship between an Artifact and an Execution in a lineage graph.
Event_Type
Describes whether an Event's Artifact is the Execution's input or output.
EventActions
Actions are parts of events that are executed by the agent.
EventMetadata
Metadata relating to a LLM response event.
ExactMatchInput
Input for exact match metric.
ExactMatchInstance
Spec for exact match instance.
ExactMatchMetricValue
Exact match metric value for an instance.
ExactMatchResults
Results for exact match metric.
ExactMatchSpec
Spec for exact match metric - returns 1 if prediction and reference exactly matches, otherwise 0.
Example
A single example to upload or read from the Example Store.
Examples
Example-based explainability that returns the nearest neighbors from the provided dataset.
Examples_ExampleGcsSource
The Cloud Storage input instances.
Examples_ExampleGcsSource_DataFormat
The format of the input example instances.
ExamplesArrayFilter
Filters for examples' array metadata fields. An array field is example metadata where multiple values are attributed to a single example.
ExamplesArrayFilter_ArrayOperator
The logic to use for filtering.
ExamplesOverride
Overrides for example-based explanations.
ExamplesOverride_DataFormat
Data format enum.
ExamplesRestrictionsNamespace
Restrictions namespace for example-based explanations overrides.
ExampleStore
Represents an executable service to manage and retrieve examples.
ExampleStoreConfig
Configuration for the Example Store.
ExampleStoreService
A service for managing and retrieving few-shot examples.
ExecutableCode
Code generated by the model that is meant to be executed, and the result returned to the model.
ExecutableCode_Language
Supported programming languages for the generated code.
ExecuteExtensionRequest
Request message for ExtensionExecutionService.ExecuteExtension.
ExecuteExtensionResponse
Response message for ExtensionExecutionService.ExecuteExtension.
Execution
Instance of a general execution.
Execution_State
Describes the state of the Execution.
ExplainRequest
Request message for PredictionService.Explain.
ExplainResponse
Response message for PredictionService.Explain.
ExplainResponse_ConcurrentExplanation
This message is a wrapper grouping Concurrent Explanations.
Explanation
Explanation of a prediction (provided in PredictResponse.predictions) produced by the Model on a given instance.
ExplanationMetadata
Metadata describing the Model's input and output for explanation.
ExplanationMetadata_InputMetadata
Metadata of the input of a feature.
ExplanationMetadata_InputMetadata_Encoding
Defines how a feature is encoded. Defaults to IDENTITY.
ExplanationMetadata_InputMetadata_FeatureValueDomain
Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained.
ExplanationMetadata_InputMetadata_Visualization
Visualization configurations for image explanation.
ExplanationMetadata_InputMetadata_Visualization_ColorMap
The color scheme used for highlighting areas.
ExplanationMetadata_InputMetadata_Visualization_OverlayType
How the original image is displayed in the visualization.
ExplanationMetadata_InputMetadata_Visualization_Polarity
Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
ExplanationMetadata_InputMetadata_Visualization_Type
Type of the image visualization. Only applicable to google.cloud.aiplatform.v1beta1.ExplanationParameters.integrated_gradients_attribution.
ExplanationMetadata_OutputMetadata
Metadata of the prediction output to be explained.
ExplanationMetadataOverride
The ExplanationMetadata entries that can be overridden at google.cloud.aiplatform.v1beta1.PredictionService.Explain time.
ExplanationMetadataOverride_InputMetadataOverride
The google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata entries to be overridden.
ExplanationParameters
Parameters to configure explaining for Model's predictions.
ExplanationSpec
Specification of Model explanation.
ExplanationSpecOverride
The ExplanationSpec entries that can be overridden at google.cloud.aiplatform.v1beta1.PredictionService.Explain time.
ExportDataConfig
Describes what part of the Dataset is to be exported, the destination of the export and how to export.
ExportDataOperationMetadata
Runtime operation information for DatasetService.ExportData.
ExportDataRequest
Request message for DatasetService.ExportData.
ExportDataResponse
Response message for DatasetService.ExportData.
ExportFeatureValuesOperationMetadata
Details of operations that exports Features values.
ExportFeatureValuesRequest
Request message for FeaturestoreService.ExportFeatureValues.
ExportFeatureValuesRequest_FullExport
Describes exporting all historical Feature values of all entities of the EntityType between start_time, end_time.
ExportFeatureValuesRequest_SnapshotExport
Describes exporting the latest Feature values of all entities of the EntityType between start_time, snapshot_time.
ExportFeatureValuesResponse
Response message for FeaturestoreService.ExportFeatureValues.
ExportFractionSplit
Assigns the input data to training, validation, and test sets as per the given fractions. Any of training_fraction, validation_fraction and test_fraction may optionally be provided, they must sum to up to 1. If the provided ones sum to less than 1, the remainder is assigned to sets as decided by Vertex AI. If none of the fractions are set, by default roughly 80% of data is used for training, 10% for validation, and 10% for test.
ExportModelOperationMetadata
Details of ModelService.ExportModel operation.
ExportModelOperationMetadata_OutputInfo
Further describes the output of the ExportModel. Supplements ExportModelRequest.OutputConfig.
ExportModelRequest
Request message for ModelService.ExportModel.
ExportModelRequest_OutputConfig
Output configuration for the Model export.
ExportModelResponse
Response message of ModelService.ExportModel operation.
ExportPublisherModelOperationMetadata
Runtime operation information for ModelGardenService.ExportPublisherModel.
ExportPublisherModelRequest
Request message for ModelGardenService.ExportPublisherModel.
ExportPublisherModelResponse
Response message for ModelGardenService.ExportPublisherModel.
ExportTensorboardTimeSeriesDataRequest
Request message for TensorboardService.ExportTensorboardTimeSeriesData.
ExportTensorboardTimeSeriesDataResponse
Response message for TensorboardService.ExportTensorboardTimeSeriesData.
Extension
Extensions are tools for large language models to access external data, run computations, etc.
ExtensionExecutionService
A service for Extension execution.
ExtensionManifest
Manifest spec of an Extension needed for runtime execution.
ExtensionManifest_ApiSpec
The API specification shown to the LLM.
ExtensionOperation
Operation of an extension.
ExtensionPrivateServiceConnectConfig
PrivateExtensionConfig configuration for the extension.
ExtensionRegistryService
A service for managing Vertex AI's Extension registry.
Fact
The fact used in grounding.
FasterDeploymentConfig
Configuration for faster model deployment.
Feature
Feature Metadata information. For example, color is a feature that describes an apple.
Feature_MonitoringStatsAnomaly
A list of historical SnapshotAnalysis or ImportFeaturesAnalysis stats requested by user, sorted by FeatureStatsAnomaly.start_time descending.
Feature_MonitoringStatsAnomaly_Objective
If the objective in the request is both Import Feature Analysis and Snapshot Analysis, this objective could be one of them. Otherwise, this objective should be the same as the objective in the request.
Feature_ValueType
Only applicable for Vertex AI Legacy Feature Store. An enum representing the value type of a feature.
FeatureGroup
Vertex AI Feature Group.
FeatureGroup_BigQuery
Input source type for BigQuery Tables and Views.
FeatureGroup_BigQuery_TimeSeries
FeatureGroup_ServiceAgentType
Service agent type used during jobs under a FeatureGroup.
FeatureMonitor
Vertex AI Feature Monitor.
FeatureMonitorJob
Vertex AI Feature Monitor Job.
FeatureMonitorJob_FeatureMonitorJobTrigger
Choices of the trigger type.
FeatureMonitorJob_JobSummary
Summary from the FeatureMonitorJob.
FeatureNoiseSigma
Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients.
FeatureNoiseSigma_NoiseSigmaForFeature
Noise sigma for a single feature.
FeatureOnlineStore
Vertex AI Feature Online Store provides a centralized repository for serving ML features and embedding indexes at low latency. The Feature Online Store is a top-level container.
FeatureOnlineStore_Bigtable
FeatureOnlineStore_Bigtable_AutoScaling
FeatureOnlineStore_Bigtable_BigtableMetadata
Metadata of the Bigtable instance. This is used by direct read access to the Bigtable in tenant project.
FeatureOnlineStore_DedicatedServingEndpoint
The dedicated serving endpoint for this FeatureOnlineStore. Only need to set when you choose Optimized storage type. Public endpoint is provisioned by default.
FeatureOnlineStore_EmbeddingManagement
Deprecated: This sub message is no longer needed anymore and embedding management is automatically enabled when specifying Optimized storage type. Contains settings for embedding management.
FeatureOnlineStore_Optimized
Optimized storage type
FeatureOnlineStore_State
Possible states a featureOnlineStore can have.
FeatureOnlineStoreAdminService
The service that handles CRUD and List for resources for FeatureOnlineStore.
FeatureOnlineStoreService
A service for fetching feature values from the online store.
FeatureRegistryService
The service that handles CRUD and List for resources for FeatureRegistry.
FeatureSelectionConfig
Feature selection configuration for the FeatureMonitor.
FeatureSelectionConfig_FeatureConfig
Feature configuration.
FeatureSelector
Selector for Features of an EntityType.
FeatureStatsAndAnomaly
Stats and Anomaly generated by FeatureMonitorJobs. Anomaly only includes Drift.
FeatureStatsAndAnomalySpec
Defines how to select FeatureStatsAndAnomaly to be populated in response. If set, retrieves FeatureStatsAndAnomaly generated by FeatureMonitors based on this spec.
FeatureStatsAnomaly
Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.
Featurestore
Vertex AI Feature Store provides a centralized repository for organizing, storing, and serving ML features. The Featurestore is a top-level container for your features and their values.
Featurestore_OnlineServingConfig
OnlineServingConfig specifies the details for provisioning online serving resources.
Featurestore_OnlineServingConfig_Scaling
Online serving scaling configuration. If min_node_count and max_node_count are set to the same value, the cluster will be configured with the fixed number of node (no auto-scaling).
Featurestore_State
Possible states a featurestore can have.
FeaturestoreMonitoringConfig
Configuration of how features in Featurestore are monitored.
FeaturestoreMonitoringConfig_ImportFeaturesAnalysis
Configuration of the Featurestore's ImportFeature Analysis Based Monitoring. This type of analysis generates statistics for values of each Feature imported by every ImportFeatureValues operation.
FeaturestoreMonitoringConfig_ImportFeaturesAnalysis_Baseline
Defines the baseline to do anomaly detection for feature values imported by each ImportFeatureValues operation.
FeaturestoreMonitoringConfig_ImportFeaturesAnalysis_State
The state defines whether to enable ImportFeature analysis.
FeaturestoreMonitoringConfig_SnapshotAnalysis
Configuration of the Featurestore's Snapshot Analysis Based Monitoring. This type of analysis generates statistics for each Feature based on a snapshot of the latest feature value of each entities every monitoring_interval.
FeaturestoreMonitoringConfig_ThresholdConfig
The config for Featurestore Monitoring threshold.
FeaturestoreOnlineServingService
A service for serving online feature values.
FeaturestoreService
The service that handles CRUD and List for resources for Featurestore.
FeatureValue
Value for a feature.
FeatureValue_Metadata
Metadata of feature value.
FeatureValueDestination
A destination location for Feature values and format.
FeatureValueList
Container for list of values.
FeatureView
FeatureView is representation of values that the FeatureOnlineStore will serve based on its syncConfig.
FeatureView_BigQuerySource
FeatureView_BigtableMetadata
Metadata for the Cloud Bigtable that supports directly interacting Bigtable instances.
FeatureView_FeatureRegistrySource
A Feature Registry source for features that need to be synced to Online Store.
FeatureView_FeatureRegistrySource_FeatureGroup
Features belonging to a single feature group that will be synced to Online Store.
FeatureView_IndexConfig
Configuration for vector indexing.
FeatureView_IndexConfig_BruteForceConfig
Configuration options for using brute force search.
FeatureView_IndexConfig_DistanceMeasureType
The distance measure used in nearest neighbor search.
FeatureView_IndexConfig_TreeAhconfig
Configuration options for the tree-AH algorithm.
FeatureView_OptimizedConfig
Configuration for FeatureViews created in Optimized FeatureOnlineStore.
FeatureView_ServiceAgentType
Service agent type used during data sync.
FeatureView_SyncConfig
Configuration for Sync. Only one option is set.
FeatureView_VectorSearchConfig
Deprecated. Use IndexConfig instead.
FeatureView_VectorSearchConfig_BruteForceConfig
FeatureView_VectorSearchConfig_DistanceMeasureType
FeatureView_VectorSearchConfig_TreeAhconfig
FeatureView_VertexRagSource
A Vertex Rag source for features that need to be synced to Online Store.
FeatureViewDataFormat
Format of the data in the Feature View.
FeatureViewDataKey
Lookup key for a feature view.
FeatureViewDataKey_CompositeKey
ID that is comprised from several parts (columns).
FeatureViewDirectWriteRequest
Request message for FeatureOnlineStoreService.FeatureViewDirectWrite.
FeatureViewDirectWriteRequest_DataKeyAndFeatureValues
A data key and associated feature values to write to the feature view.
FeatureViewDirectWriteRequest_DataKeyAndFeatureValues_Feature
Feature name & value pair.
FeatureViewDirectWriteRequest_DataKeyAndFeatureValues_Feature_FeatureValueAndTimestamp
Feature value and timestamp.
FeatureViewDirectWriteResponse
Response message for FeatureOnlineStoreService.FeatureViewDirectWrite.
FeatureViewDirectWriteResponse_WriteResponse
Details about the write for each key.
FeatureViewSync
FeatureViewSync is a representation of sync operation which copies data from data source to Feature View in Online Store.
FeatureViewSync_SyncSummary
Summary from the Sync job. For continuous syncs, the summary is updated periodically. For batch syncs, it gets updated on completion of the sync.
FetchExamplesRequest
Request message for ExampleStoreService.FetchExamples.
FetchExamplesResponse
Response message for ExampleStoreService.FetchExamples.
FetchFeatureValuesRequest
Request message for FeatureOnlineStoreService.FetchFeatureValues. All the features under the requested feature view will be returned.
FetchFeatureValuesRequest_Format
Format of the response data.
FetchFeatureValuesResponse
Response message for FeatureOnlineStoreService.FetchFeatureValues
FetchFeatureValuesResponse_FeatureNameValuePairList
Response structure in the format of key (feature name) and (feature) value pair.
FetchFeatureValuesResponse_FeatureNameValuePairList_FeatureNameValuePair
Feature name & value pair.
FetchPublisherModelConfigRequest
Request message for EndpointService.FetchPublisherModelConfig.
FileData
URI based data.
FileStatus
RagFile status.
FileStatus_State
RagFile state.
FilterSplit
Assigns input data to training, validation, and test sets based on the given filters, data pieces not matched by any filter are ignored. Currently only supported for Datasets containing DataItems. If any of the filters in this message are to match nothing, then they can be set as '-' (the minus sign).
FindNeighborsRequest
The request message for MatchService.FindNeighbors.
FindNeighborsRequest_Query
A query to find a number of the nearest neighbors (most similar vectors) of a vector.
FindNeighborsRequest_Query_Rrf
Parameters for RRF algorithm that combines search results.
FindNeighborsResponse
The response message for MatchService.FindNeighbors.
FindNeighborsResponse_NearestNeighbors
Nearest neighbors for one query.
FindNeighborsResponse_Neighbor
A neighbor of the query vector.
FlexStart
FlexStart is used to schedule the deployment workload on DWS resource. It contains the max duration of the deployment.
FluencyInput
Input for fluency metric.
FluencyInstance
Spec for fluency instance.
FluencyResult
Spec for fluency result.
FluencySpec
Spec for fluency score metric.
FractionSplit
Assigns the input data to training, validation, and test sets as per the given fractions. Any of training_fraction, validation_fraction and test_fraction may optionally be provided, they must sum to up to 1. If the provided ones sum to less than 1, the remainder is assigned to sets as decided by Vertex AI. If none of the fractions are set, by default roughly 80% of data is used for training, 10% for validation, and 10% for test.
FulfillmentInput
Input for fulfillment metric.
FulfillmentInstance
Spec for fulfillment instance.
FulfillmentResult
Spec for fulfillment result.
FulfillmentSpec
Spec for fulfillment metric.
FunctionCall
A predicted FunctionCall returned from the model that contains a string representing the FunctionDeclaration.name and a structured JSON object containing the parameters and their values.
FunctionCallingConfig
Function calling config.
FunctionCallingConfig_Mode
Function calling mode.
FunctionDeclaration
Structured representation of a function declaration as defined by the OpenAPI 3.0 specification. Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a Tool by the model and executed by the client.
FunctionResponse
The result output from a FunctionCall that contains a string representing the FunctionDeclaration.name and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a FunctionCall made based on model prediction.
GcsDestination
The Google Cloud Storage location where the output is to be written to.
GcsSource
The Google Cloud Storage location for the input content.
GeminiExample
Format for Gemini examples used for Vertex Multimodal datasets.
GeminiRequestReadConfig
Configuration for how to read Gemini requests from a multimodal dataset.
GeminiTemplateConfig
Template configuration to create Gemini examples from a multimodal dataset.
GenAiAdvancedFeaturesConfig
Configuration for GenAiAdvancedFeatures.
GenAiAdvancedFeaturesConfig_RagConfig
Configuration for Retrieval Augmented Generation feature.
GenAiCacheService
Service for managing Vertex AI's CachedContent resource.
GenAiTuningService
A service for creating and managing GenAI Tuning Jobs.
GenerateContentRequest
Request message for PredictionService.GenerateContent.
GenerateContentResponse
Response message for PredictionService.GenerateContent.
GenerateContentResponse_PromptFeedback
Content filter results for a prompt sent in the request.
GenerateContentResponse_PromptFeedback_BlockedReason
Blocked reason enumeration.
GenerateContentResponse_UsageMetadata
Usage metadata about response(s).
GenerateFetchAccessTokenRequest
Request message for FeatureOnlineStoreService.GenerateFetchAccessToken.
GenerateFetchAccessTokenResponse
Response message for FeatureOnlineStoreService.GenerateFetchAccessToken.
GenerateMemoriesOperationMetadata
Details of MemoryBankService.GenerateMemories operation.
GenerateMemoriesRequest
Request message for MemoryBankService.GenerateMemories.
GenerateMemoriesRequest_DirectContentsSource
Defines a direct source of content from which to generate the memories.
GenerateMemoriesRequest_DirectContentsSource_Event
A single piece of conversation from which to generate memories.
GenerateMemoriesRequest_DirectMemoriesSource
Defines a direct source of memories that should be uploaded to Memory Bank with consolidation.
GenerateMemoriesRequest_DirectMemoriesSource_DirectMemory
A direct memory to upload to Memory Bank.
GenerateMemoriesRequest_VertexSessionSource
Defines an Agent Engine Session from which to generate the memories. If scope is not provided, the scope will be extracted from the Session (i.e. {"user_id": sesison.user_id}).
GenerateMemoriesResponse
Response message for MemoryBankService.GenerateMemories.
GenerateMemoriesResponse_GeneratedMemory
A memory generated by the operation.
GenerateMemoriesResponse_GeneratedMemory_Action
Actions that can be performed on a Memory.
GenerateVideoResponse
Generate video response.
GenerationConfig
Generation config.
GenerationConfig_MediaResolution
Media resolution for the input media.
GenerationConfig_Modality
The modalities of the response.
GenerationConfig_ModelConfig
Config for model selection.
GenerationConfig_ModelConfig_FeatureSelectionPreference
Options for feature selection preference.
GenerationConfig_RoutingConfig
The configuration for routing the request to a specific model.
GenerationConfig_RoutingConfig_AutoRoutingMode
When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference.
GenerationConfig_RoutingConfig_AutoRoutingMode_ModelRoutingPreference
The model routing preference.
GenerationConfig_RoutingConfig_ManualRoutingMode
When manual routing is set, the specified model will be used directly.
GenerationConfig_ThinkingConfig
Config for thinking features.
GenericOperationMetadata
Generic Metadata shared by all operations.
GenieSource
Contains information about the source of the models generated from Generative AI Studio.
GetAnnotationSpecRequest
Request message for DatasetService.GetAnnotationSpec.
GetArtifactRequest
Request message for MetadataService.GetArtifact.
GetBatchPredictionJobRequest
Request message for JobService.GetBatchPredictionJob.
GetCachedContentRequest
Request message for GenAiCacheService.GetCachedContent.
GetContextRequest
Request message for MetadataService.GetContext.
GetCustomJobRequest
Request message for JobService.GetCustomJob.
GetDataLabelingJobRequest
Request message for JobService.GetDataLabelingJob.
GetDatasetRequest
Request message for DatasetService.GetDataset.
GetDatasetVersionRequest
Request message for DatasetService.GetDatasetVersion.
GetDeploymentResourcePoolRequest
Request message for GetDeploymentResourcePool method.
GetEndpointRequest
Request message for EndpointService.GetEndpoint
GetEntityTypeRequest
Request message for FeaturestoreService.GetEntityType.
GetExampleStoreRequest
Request message for ExampleStoreService.GetExampleStore.
GetExecutionRequest
Request message for MetadataService.GetExecution.
GetExtensionRequest
Request message for ExtensionRegistryService.GetExtension.
GetFeatureGroupRequest
Request message for FeatureRegistryService.GetFeatureGroup.
GetFeatureMonitorJobRequest
Request message for FeatureRegistryService.GetFeatureMonitorJob.
GetFeatureMonitorRequest
Request message for FeatureRegistryService.GetFeatureMonitor.
GetFeatureOnlineStoreRequest
Request message for FeatureOnlineStoreAdminService.GetFeatureOnlineStore.
GetFeatureRequest
Request message for FeaturestoreService.GetFeature. Request message for FeatureRegistryService.GetFeature.
GetFeaturestoreRequest
Request message for FeaturestoreService.GetFeaturestore.
GetFeatureViewRequest
Request message for FeatureOnlineStoreAdminService.GetFeatureView.
GetFeatureViewSyncRequest
Request message for FeatureOnlineStoreAdminService.GetFeatureViewSync.
GetHyperparameterTuningJobRequest
Request message for JobService.GetHyperparameterTuningJob.
GetIndexEndpointRequest
Request message for IndexEndpointService.GetIndexEndpoint
GetIndexRequest
Request message for IndexService.GetIndex
GetMemoryRequest
Request message for MemoryBankService.GetMemory.
GetMetadataSchemaRequest
Request message for MetadataService.GetMetadataSchema.
GetMetadataStoreRequest
Request message for MetadataService.GetMetadataStore.
GetModelDeploymentMonitoringJobRequest
Request message for JobService.GetModelDeploymentMonitoringJob.
GetModelEvaluationRequest
Request message for ModelService.GetModelEvaluation.
GetModelEvaluationSliceRequest
Request message for ModelService.GetModelEvaluationSlice.
GetModelMonitoringJobRequest
Request message for ModelMonitoringService.GetModelMonitoringJob.
GetModelMonitorRequest
Request message for ModelMonitoringService.GetModelMonitor.
GetModelRequest
Request message for ModelService.GetModel.
GetNasJobRequest
Request message for JobService.GetNasJob.
GetNasTrialDetailRequest
Request message for JobService.GetNasTrialDetail.
GetNotebookExecutionJobRequest
Request message for NotebookService.GetNotebookExecutionJob
GetNotebookRuntimeRequest
Request message for NotebookService.GetNotebookRuntime
GetNotebookRuntimeTemplateRequest
Request message for NotebookService.GetNotebookRuntimeTemplate
GetPersistentResourceRequest
Request message for PersistentResourceService.GetPersistentResource.
GetPipelineJobRequest
Request message for PipelineService.GetPipelineJob.
GetPublisherModelRequest
Request message for ModelGardenService.GetPublisherModel
GetRagCorpusRequest
Request message for VertexRagDataService.GetRagCorpus
GetRagEngineConfigRequest
Request message for VertexRagDataService.GetRagEngineConfig
GetRagFileRequest
Request message for VertexRagDataService.GetRagFile
GetReasoningEngineRequest
Request message for ReasoningEngineService.GetReasoningEngine.
GetScheduleRequest
Request message for ScheduleService.GetSchedule.
GetSessionRequest
Request message for SessionService.GetSession.
GetSpecialistPoolRequest
Request message for SpecialistPoolService.GetSpecialistPool.
GetStudyRequest
Request message for VizierService.GetStudy.
GetTensorboardExperimentRequest
Request message for TensorboardService.GetTensorboardExperiment.
GetTensorboardRequest
Request message for TensorboardService.GetTensorboard.
GetTensorboardRunRequest
Request message for TensorboardService.GetTensorboardRun.
GetTensorboardTimeSeriesRequest
Request message for TensorboardService.GetTensorboardTimeSeries.
GetTrainingPipelineRequest
Request message for PipelineService.GetTrainingPipeline.
GetTrialRequest
Request message for VizierService.GetTrial.
GetTuningJobRequest
Request message for GenAiTuningService.GetTuningJob.
GoogleDriveSource
The Google Drive location for the input content.
GoogleDriveSource_ResourceId
The type and ID of the Google Drive resource.
GoogleDriveSource_ResourceId_ResourceType
The type of the Google Drive resource.
GoogleMaps
Tool to retrieve public maps data for grounding, powered by Google.
GoogleSearchRetrieval
Tool to retrieve public web data for grounding, powered by Google.
GroundednessInput
Input for groundedness metric.
GroundednessInstance
Spec for groundedness instance.
GroundednessResult
Spec for groundedness result.
GroundednessSpec
Spec for groundedness metric.
GroundingChunk
Grounding chunk.
GroundingChunk_Maps
Chunk from Google Maps.
GroundingChunk_Maps_PlaceAnswerSources
GroundingChunk_Maps_PlaceAnswerSources_ReviewSnippet
Encapsulates a review snippet.
GroundingChunk_RetrievedContext
Chunk from context retrieved by the retrieval tools.
GroundingChunk_Web
Chunk from the web.
GroundingMetadata
Metadata returned to client when grounding is enabled.
GroundingMetadata_SourceFlaggingUri
Source content flagging uri for a place or review. This is currently populated only for Google Maps grounding.
GroundingSupport
Grounding support.
HarmCategory
Harm categories that will block the content.
HttpElementLocation
Enum of location an HTTP element can be.
HyperparameterTuningJob
Represents a HyperparameterTuningJob. A HyperparameterTuningJob has a Study specification and multiple CustomJobs with identical CustomJob specification.
IdMatcher
Matcher for Features of an EntityType by Feature ID.
ImageConfig
Config for image generation features.
ImportDataConfig
Describes the location from where we import data into a Dataset, together with the labels that will be applied to the DataItems and the Annotations.
ImportDataOperationMetadata
Runtime operation information for DatasetService.ImportData.
ImportDataRequest
Request message for DatasetService.ImportData.
ImportDataResponse
Response message for DatasetService.ImportData.
ImportExtensionOperationMetadata
Details of ExtensionRegistryService.ImportExtension operation.
ImportExtensionRequest
Request message for ExtensionRegistryService.ImportExtension.
ImportFeatureValuesOperationMetadata
Details of operations that perform import Feature values.
ImportFeatureValuesRequest
Request message for FeaturestoreService.ImportFeatureValues.
ImportFeatureValuesRequest_FeatureSpec
Defines the Feature value(s) to import.
ImportFeatureValuesResponse
Response message for FeaturestoreService.ImportFeatureValues.
ImportIndexOperationMetadata
Runtime operation information for IndexService.ImportIndex.
ImportIndexRequest
Request message for IndexService.ImportIndex.
ImportIndexRequest_ConnectorConfig
Configuration for importing data from an external source.
ImportIndexRequest_ConnectorConfig_BigQuerySourceConfig
Configuration for importing data from a BigQuery table.
ImportIndexRequest_ConnectorConfig_DatapointFieldMapping
Mapping of datapoint fields to column names for columnar data sources.
ImportIndexRequest_ConnectorConfig_DatapointFieldMapping_NumericRestrict
Restrictions on numeric values.
ImportIndexRequest_ConnectorConfig_DatapointFieldMapping_NumericRestrict_ValueType
The type of numeric value for the restrict.
ImportIndexRequest_ConnectorConfig_DatapointFieldMapping_Restrict
Restrictions on string values.
ImportModelEvaluationRequest
Request message for ModelService.ImportModelEvaluation
ImportRagFilesConfig
Config for importing RagFiles.
ImportRagFilesOperationMetadata
Runtime operation information for VertexRagDataService.ImportRagFiles.
ImportRagFilesRequest
Request message for VertexRagDataService.ImportRagFiles.
ImportRagFilesResponse
Response message for VertexRagDataService.ImportRagFiles.
Index
A representation of a collection of database items organized in a way that allows for approximate nearest neighbor (a.k.a ANN) algorithms search.
Index_IndexUpdateMethod
The update method of an Index.
IndexDatapoint
A datapoint of Index.
IndexDatapoint_CrowdingTag
Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute.
IndexDatapoint_NumericRestriction
This field allows restricts to be based on numeric comparisons rather than categorical tokens.
IndexDatapoint_NumericRestriction_Operator
Which comparison operator to use. Should be specified for queries only; specifying this for a datapoint is an error.
IndexDatapoint_Restriction
Restriction of a datapoint which describe its attributes(tokens) from each of several attribute categories(namespaces).
IndexDatapoint_SparseEmbedding
Feature embedding vector for sparse index. An array of numbers whose values are located in the specified dimensions.
IndexEndpoint
Indexes are deployed into it. An IndexEndpoint can have multiple DeployedIndexes.
IndexEndpointService
A service for managing Vertex AI's IndexEndpoints.
IndexPrivateEndpoints
IndexPrivateEndpoints proto is used to provide paths for users to send requests via private endpoints (e.g. private service access, private service connect). To send request via private service access, use match_grpc_address. To send request via private service connect, use service_attachment.
IndexService
A service for creating and managing Vertex AI's Index resources.
IndexStats
Stats of the Index.
InputDataConfig
Specifies Vertex AI owned input data to be used for training, and possibly evaluating, the Model.
Int64Array
A list of int64 values.
IntegratedGradientsAttribution
An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
JiraSource
The Jira source for the ImportRagFilesRequest.
JiraSource_JiraQueries
JiraQueries contains the Jira queries and corresponding authentication.
JobService
A service for creating and managing Vertex AI's jobs.
JobState
Describes the state of a job.
LargeModelReference
Contains information about the Large Model.
LineageSubgraph
A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.
ListAnnotationsRequest
Request message for DatasetService.ListAnnotations.
ListAnnotationsResponse
Response message for DatasetService.ListAnnotations.
ListArtifactsRequest
Request message for MetadataService.ListArtifacts.
ListArtifactsResponse
Response message for MetadataService.ListArtifacts.
ListBatchPredictionJobsRequest
Request message for JobService.ListBatchPredictionJobs.
ListBatchPredictionJobsResponse
Response message for JobService.ListBatchPredictionJobs
ListCachedContentsRequest
Request to list CachedContents.
ListCachedContentsResponse
Response with a list of CachedContents.
ListContextsRequest
Request message for MetadataService.ListContexts
ListContextsResponse
Response message for MetadataService.ListContexts.
ListCustomJobsRequest
Request message for JobService.ListCustomJobs.
ListCustomJobsResponse
Response message for JobService.ListCustomJobs
ListDataItemsRequest
Request message for DatasetService.ListDataItems.
ListDataItemsResponse
Response message for DatasetService.ListDataItems.
ListDataLabelingJobsRequest
Request message for JobService.ListDataLabelingJobs.
ListDataLabelingJobsResponse
Response message for JobService.ListDataLabelingJobs.
ListDatasetsRequest
Request message for DatasetService.ListDatasets.
ListDatasetsResponse
Response message for DatasetService.ListDatasets.
ListDatasetVersionsRequest
Request message for DatasetService.ListDatasetVersions.
ListDatasetVersionsResponse
Response message for DatasetService.ListDatasetVersions.
ListDeploymentResourcePoolsRequest
Request message for ListDeploymentResourcePools method.
ListDeploymentResourcePoolsResponse
Response message for ListDeploymentResourcePools method.
ListEndpointsRequest
Request message for EndpointService.ListEndpoints.
ListEndpointsResponse
Response message for EndpointService.ListEndpoints.
ListEntityTypesRequest
Request message for FeaturestoreService.ListEntityTypes.
ListEntityTypesResponse
Response message for FeaturestoreService.ListEntityTypes.
ListEventsRequest
Request message for SessionService.ListEvents.
ListEventsResponse
Response message for SessionService.ListEvents.
ListExampleStoresRequest
Request message for ExampleStoreService.ListExampleStores.
ListExampleStoresResponse
Response message for ExampleStoreService.ListExampleStores.
ListExecutionsRequest
Request message for MetadataService.ListExecutions.
ListExecutionsResponse
Response message for MetadataService.ListExecutions.
ListExtensionsRequest
Request message for ExtensionRegistryService.ListExtensions.
ListExtensionsResponse
Response message for ExtensionRegistryService.ListExtensions
ListFeatureGroupsRequest
Request message for FeatureRegistryService.ListFeatureGroups.
ListFeatureGroupsResponse
Response message for FeatureRegistryService.ListFeatureGroups.
ListFeatureMonitorJobsRequest
Request message for FeatureRegistryService.ListFeatureMonitorJobs.
ListFeatureMonitorJobsResponse
Response message for FeatureRegistryService.ListFeatureMonitorJobs.
ListFeatureMonitorsRequest
Request message for FeatureRegistryService.ListFeatureMonitors.
ListFeatureMonitorsResponse
Response message for FeatureRegistryService.ListFeatureMonitors.
ListFeatureOnlineStoresRequest
Request message for FeatureOnlineStoreAdminService.ListFeatureOnlineStores.
ListFeatureOnlineStoresResponse
Response message for FeatureOnlineStoreAdminService.ListFeatureOnlineStores.
ListFeaturesRequest
Request message for FeaturestoreService.ListFeatures. Request message for FeatureRegistryService.ListFeatures.
ListFeaturesResponse
Response message for FeaturestoreService.ListFeatures. Response message for FeatureRegistryService.ListFeatures.
ListFeaturestoresRequest
Request message for FeaturestoreService.ListFeaturestores.
ListFeaturestoresResponse
Response message for FeaturestoreService.ListFeaturestores.
ListFeatureViewsRequest
Request message for FeatureOnlineStoreAdminService.ListFeatureViews.
ListFeatureViewsResponse
Response message for FeatureOnlineStoreAdminService.ListFeatureViews.
ListFeatureViewSyncsRequest
Request message for FeatureOnlineStoreAdminService.ListFeatureViewSyncs.
ListFeatureViewSyncsResponse
Response message for FeatureOnlineStoreAdminService.ListFeatureViewSyncs.
ListHyperparameterTuningJobsRequest
Request message for JobService.ListHyperparameterTuningJobs.
ListHyperparameterTuningJobsResponse
Response message for JobService.ListHyperparameterTuningJobs
ListIndexEndpointsRequest
Request message for IndexEndpointService.ListIndexEndpoints.
ListIndexEndpointsResponse
Response message for IndexEndpointService.ListIndexEndpoints.
ListIndexesRequest
Request message for IndexService.ListIndexes.
ListIndexesResponse
Response message for IndexService.ListIndexes.
ListMemoriesRequest
Request message for MemoryBankService.ListMemories.
ListMemoriesResponse
Response message for MemoryBankService.ListMemories.
ListMetadataSchemasRequest
Request message for MetadataService.ListMetadataSchemas.
ListMetadataSchemasResponse
Response message for MetadataService.ListMetadataSchemas.
ListMetadataStoresRequest
Request message for MetadataService.ListMetadataStores.
ListMetadataStoresResponse
Response message for MetadataService.ListMetadataStores.
ListModelDeploymentMonitoringJobsRequest
Request message for JobService.ListModelDeploymentMonitoringJobs.
ListModelDeploymentMonitoringJobsResponse
Response message for JobService.ListModelDeploymentMonitoringJobs.
ListModelEvaluationSlicesRequest
Request message for ModelService.ListModelEvaluationSlices.
ListModelEvaluationSlicesResponse
Response message for ModelService.ListModelEvaluationSlices.
ListModelEvaluationsRequest
Request message for ModelService.ListModelEvaluations.
ListModelEvaluationsResponse
Response message for ModelService.ListModelEvaluations.
ListModelMonitoringJobsRequest
Request message for ModelMonitoringService.ListModelMonitoringJobs.
ListModelMonitoringJobsResponse
Response message for ModelMonitoringService.ListModelMonitoringJobs.
ListModelMonitorsRequest
Request message for ModelMonitoringService.ListModelMonitors.
ListModelMonitorsResponse
Response message for ModelMonitoringService.ListModelMonitors
ListModelsRequest
Request message for ModelService.ListModels.
ListModelsResponse
Response message for ModelService.ListModels
ListModelVersionCheckpointsRequest
Request message for ModelService.ListModelVersionCheckpoints.
ListModelVersionCheckpointsResponse
Response message for ModelService.ListModelVersionCheckpoints
ListModelVersionsRequest
Request message for ModelService.ListModelVersions.
ListModelVersionsResponse
Response message for ModelService.ListModelVersions
ListNasJobsRequest
Request message for JobService.ListNasJobs.
ListNasJobsResponse
Response message for JobService.ListNasJobs
ListNasTrialDetailsRequest
Request message for JobService.ListNasTrialDetails.
ListNasTrialDetailsResponse
Response message for JobService.ListNasTrialDetails
ListNotebookExecutionJobsRequest
Request message for NotebookService.ListNotebookExecutionJobs
ListNotebookExecutionJobsResponse
Response message for NotebookService.CreateNotebookExecutionJob
ListNotebookRuntimesRequest
Request message for NotebookService.ListNotebookRuntimes.
ListNotebookRuntimesResponse
Response message for NotebookService.ListNotebookRuntimes.
ListNotebookRuntimeTemplatesRequest
Request message for NotebookService.ListNotebookRuntimeTemplates.
ListNotebookRuntimeTemplatesResponse
Response message for NotebookService.ListNotebookRuntimeTemplates.
ListOptimalTrialsRequest
Request message for VizierService.ListOptimalTrials.
ListOptimalTrialsResponse
Response message for VizierService.ListOptimalTrials.
ListPersistentResourcesRequest
Request message for PersistentResourceService.ListPersistentResource.
ListPersistentResourcesResponse
Response message for PersistentResourceService.ListPersistentResources
ListPipelineJobsRequest
Request message for PipelineService.ListPipelineJobs.
ListPipelineJobsResponse
Response message for PipelineService.ListPipelineJobs
ListPublisherModelsRequest
Request message for ModelGardenService.ListPublisherModels.
ListPublisherModelsResponse
Response message for ModelGardenService.ListPublisherModels.
ListRagCorporaRequest
Request message for VertexRagDataService.ListRagCorpora.
ListRagCorporaResponse
Response message for VertexRagDataService.ListRagCorpora.
ListRagFilesRequest
Request message for VertexRagDataService.ListRagFiles.
ListRagFilesResponse
Response message for VertexRagDataService.ListRagFiles.
ListReasoningEnginesRequest
Request message for ReasoningEngineService.ListReasoningEngines.
ListReasoningEnginesResponse
Response message for ReasoningEngineService.ListReasoningEngines
ListSavedQueriesRequest
Request message for DatasetService.ListSavedQueries.
ListSavedQueriesResponse
Response message for DatasetService.ListSavedQueries.
ListSchedulesRequest
Request message for ScheduleService.ListSchedules.
ListSchedulesResponse
Response message for ScheduleService.ListSchedules
ListSessionsRequest
Request message for SessionService.ListSessions.
ListSessionsResponse
Response message for SessionService.ListSessions.
ListSpecialistPoolsRequest
Request message for SpecialistPoolService.ListSpecialistPools.
ListSpecialistPoolsResponse
Response message for SpecialistPoolService.ListSpecialistPools.
ListStudiesRequest
Request message for VizierService.ListStudies.
ListStudiesResponse
Response message for VizierService.ListStudies.
ListTensorboardExperimentsRequest
Request message for TensorboardService.ListTensorboardExperiments.
ListTensorboardExperimentsResponse
Response message for TensorboardService.ListTensorboardExperiments.
ListTensorboardRunsRequest
Request message for TensorboardService.ListTensorboardRuns.
ListTensorboardRunsResponse
Response message for TensorboardService.ListTensorboardRuns.
ListTensorboardsRequest
Request message for TensorboardService.ListTensorboards.
ListTensorboardsResponse
Response message for TensorboardService.ListTensorboards.
ListTensorboardTimeSeriesRequest
Request message for TensorboardService.ListTensorboardTimeSeries.
ListTensorboardTimeSeriesResponse
Response message for TensorboardService.ListTensorboardTimeSeries.
ListTrainingPipelinesRequest
Request message for PipelineService.ListTrainingPipelines.
ListTrainingPipelinesResponse
Response message for PipelineService.ListTrainingPipelines
ListTrialsRequest
Request message for VizierService.ListTrials.
ListTrialsResponse
Response message for VizierService.ListTrials.
ListTuningJobsRequest
Request message for GenAiTuningService.ListTuningJobs.
ListTuningJobsResponse
Response message for GenAiTuningService.ListTuningJobs
LlmUtilityService
Service for LLM related utility functions.
LogprobsResult
Logprobs Result
LogprobsResult_Candidate
Candidate for the logprobs token and score.
LogprobsResult_TopCandidates
Candidates with top log probabilities at each decoding step.
LookupStudyRequest
Request message for VizierService.LookupStudy.
MachineSpec
Specification of a single machine.
ManualBatchTuningParameters
Manual batch tuning parameters.
MatchService
MatchService is a Google managed service for efficient vector similarity search at scale.
Measurement
A message representing a Measurement of a Trial. A Measurement contains the Metrics got by executing a Trial using suggested hyperparameter values.
Measurement_Metric
A message representing a metric in the measurement.
Memory
A memory.
MemoryBankService
A service for managing memories for LLM applications.
MergeVersionAliasesRequest
Request message for ModelService.MergeVersionAliases.
MetadataSchema
Instance of a general MetadataSchema.
MetadataSchema_MetadataSchemaType
Describes the type of the MetadataSchema.
MetadataService
Service for reading and writing metadata entries.
MetadataStore
Instance of a metadata store. Contains a set of metadata that can be queried.
MetadataStore_DataplexConfig
Represents Dataplex integration settings.
MetadataStore_MetadataStoreState
Represents state information for a MetadataStore.
Metric
The metric used for dataset level evaluation.
Metric_AggregationMetric
The aggregation metrics supported by EvaluationService.EvaluateDataset.
MetricxInput
Input for MetricX metric.
MetricxInstance
Spec for MetricX instance - The fields used for evaluation are dependent on the MetricX version.
MetricxResult
Spec for MetricX result - calculates the MetricX score for the given instance using the version specified in the spec.
MetricxSpec
Spec for MetricX metric.
MetricxSpec_MetricxVersion
MetricX Version options.
MigratableResource
Represents one resource that exists in automl.googleapis.com, datalabeling.googleapis.com or ml.googleapis.com.
MigratableResource_AutomlDataset
Represents one Dataset in automl.googleapis.com.
MigratableResource_AutomlModel
Represents one Model in automl.googleapis.com.
MigratableResource_DataLabelingDataset
Represents one Dataset in datalabeling.googleapis.com.
MigratableResource_DataLabelingDataset_DataLabelingAnnotatedDataset
Represents one AnnotatedDataset in datalabeling.googleapis.com.
MigratableResource_MlEngineModelVersion
Represents one model Version in ml.googleapis.com.
MigrateResourceRequest
Config of migrating one resource from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.
MigrateResourceRequest_MigrateAutomlDatasetConfig
Config for migrating Dataset in automl.googleapis.com to Vertex AI's Dataset.
MigrateResourceRequest_MigrateAutomlModelConfig
Config for migrating Model in automl.googleapis.com to Vertex AI's Model.
MigrateResourceRequest_MigrateDataLabelingDatasetConfig
Config for migrating Dataset in datalabeling.googleapis.com to Vertex AI's Dataset.
MigrateResourceRequest_MigrateDataLabelingDatasetConfig_MigrateDataLabelingAnnotatedDatasetConfig
Config for migrating AnnotatedDataset in datalabeling.googleapis.com to Vertex AI's SavedQuery.
MigrateResourceRequest_MigrateMlEngineModelVersionConfig
Config for migrating version in ml.googleapis.com to Vertex AI's Model.
MigrateResourceResponse
Describes a successfully migrated resource.
MigrationService
A service that migrates resources from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.
Modality
Content Part modality
ModalityTokenCount
Represents token counting info for a single modality.
Model
A trained machine learning Model.
Model_BaseModelSource
User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
Model_DeploymentResourcesType
Identifies a type of Model's prediction resources.
Model_ExportFormat
Represents export format supported by the Model. All formats export to Google Cloud Storage.
Model_ExportFormat_ExportableContent
The Model content that can be exported.
Model_OriginalModelInfo
Contains information about the original Model if this Model is a copy.
ModelArmorConfig
Configuration for Model Armor integrations of prompt and responses.
ModelContainerSpec
Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification.
ModelDeploymentMonitoringBigQueryTable
ModelDeploymentMonitoringBigQueryTable specifies the BigQuery table name as well as some information of the logs stored in this table.
ModelDeploymentMonitoringBigQueryTable_LogSource
Indicates where does the log come from.
ModelDeploymentMonitoringBigQueryTable_LogType
Indicates what type of traffic does the log belong to.
ModelDeploymentMonitoringJob
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
ModelDeploymentMonitoringJob_LatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
ModelDeploymentMonitoringJob_MonitoringScheduleState
The state to Specify the monitoring pipeline.
ModelDeploymentMonitoringObjectiveConfig
ModelDeploymentMonitoringObjectiveConfig contains the pair of deployed_model_id to ModelMonitoringObjectiveConfig.
ModelDeploymentMonitoringObjectiveType
The Model Monitoring Objective types.
ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
ModelEvaluation
A collection of metrics calculated by comparing Model's predictions on all of the test data against annotations from the test data.
ModelEvaluation_BiasConfig
Configuration for bias detection.
ModelEvaluation_ModelEvaluationExplanationSpec
ModelEvaluationSlice
A collection of metrics calculated by comparing Model's predictions on a slice of the test data against ground truth annotations.
ModelEvaluationSlice_Slice
Definition of a slice.
ModelEvaluationSlice_Slice_SliceSpec
Specification for how the data should be sliced.
ModelEvaluationSlice_Slice_SliceSpec_Range
A range of values for slice(s). low is inclusive, high is exclusive.
ModelEvaluationSlice_Slice_SliceSpec_SliceConfig
Specification message containing the config for this SliceSpec. When kind is selected as value and/or range, only a single slice will be computed. When all_values is present, a separate slice will be computed for each possible label/value for the corresponding key in config. Examples, with feature zip_code with values 12345, 23334, 88888 and feature country with values "US", "Canada", "Mexico" in the dataset:
ModelEvaluationSlice_Slice_SliceSpec_Value
Single value that supports strings and floats.
ModelExplanation
Aggregated explanation metrics for a Model over a set of instances.
ModelGardenService
The interface of Model Garden Service.
ModelGardenSource
Contains information about the source of the models generated from Model Garden.
ModelMonitor
Vertex AI Model Monitoring Service serves as a central hub for the analysis and visualization of data quality and performance related to models. ModelMonitor stands as a top level resource for overseeing your model monitoring tasks.
ModelMonitor_ModelMonitoringTarget
The monitoring target refers to the entity that is subject to analysis. e.g. Vertex AI Model version.
ModelMonitor_ModelMonitoringTarget_VertexModelSource
Model in Vertex AI Model Registry.
ModelMonitoringAlert
Represents a single monitoring alert. This is currently used in the SearchModelMonitoringAlerts api, thus the alert wrapped in this message belongs to the resource asked in the request.
ModelMonitoringAlertCondition
Monitoring alert triggered condition.
ModelMonitoringAlertConfig
The alert config for model monitoring.
ModelMonitoringAlertConfig_EmailAlertConfig
The config for email alert.
ModelMonitoringAnomaly
Represents a single model monitoring anomaly.
ModelMonitoringAnomaly_TabularAnomaly
Tabular anomaly details.
ModelMonitoringConfig
The model monitoring configuration used for Batch Prediction Job.
ModelMonitoringInput
Model monitoring data input spec.
ModelMonitoringInput_BatchPredictionOutput
Data from Vertex AI Batch prediction job output.
ModelMonitoringInput_ModelMonitoringDataset
Input dataset spec.
ModelMonitoringInput_ModelMonitoringDataset_ModelMonitoringBigQuerySource
Dataset spec for data sotred in BigQuery.
ModelMonitoringInput_ModelMonitoringDataset_ModelMonitoringGcsSource
Dataset spec for data stored in Google Cloud Storage.
ModelMonitoringInput_ModelMonitoringDataset_ModelMonitoringGcsSource_DataFormat
Supported data format.
ModelMonitoringInput_TimeOffset
Time offset setting.
ModelMonitoringInput_VertexEndpointLogs
Data from Vertex AI Endpoint request response logging.
ModelMonitoringJob
Represents a model monitoring job that analyze dataset using different monitoring algorithm.
ModelMonitoringJobExecutionDetail
Represent the execution details of the job.
ModelMonitoringJobExecutionDetail_ProcessedDataset
Processed dataset information.
ModelMonitoringNotificationSpec
Notification spec(email, notification channel) for model monitoring statistics/alerts.
ModelMonitoringNotificationSpec_EmailConfig
The config for email alerts.
ModelMonitoringNotificationSpec_NotificationChannelConfig
Google Cloud Notification Channel config.
ModelMonitoringObjectiveConfig
The objective configuration for model monitoring, including the information needed to detect anomalies for one particular model.
ModelMonitoringObjectiveConfig_ExplanationConfig
The config for integrating with Vertex Explainable AI. Only applicable if the Model has explanation_spec populated.
ModelMonitoringObjectiveConfig_ExplanationConfig_ExplanationBaseline
Output from BatchPredictionJob for Model Monitoring baseline dataset, which can be used to generate baseline attribution scores.
ModelMonitoringObjectiveConfig_ExplanationConfig_ExplanationBaseline_PredictionFormat
The storage format of the predictions generated BatchPrediction job.
ModelMonitoringObjectiveConfig_PredictionDriftDetectionConfig
The config for Prediction data drift detection.
ModelMonitoringObjectiveConfig_TrainingDataset
Training Dataset information.
ModelMonitoringObjectiveConfig_TrainingPredictionSkewDetectionConfig
The config for Training & Prediction data skew detection. It specifies the training dataset sources and the skew detection parameters.
ModelMonitoringObjectiveSpec
Monitoring objectives spec.
ModelMonitoringObjectiveSpec_DataDriftSpec
Data drift monitoring spec. Data drift measures the distribution distance between the current dataset and a baseline dataset. A typical use case is to detect data drift between the recent production serving dataset and the training dataset, or to compare the recent production dataset with a dataset from a previous period.
ModelMonitoringObjectiveSpec_FeatureAttributionSpec
Feature attribution monitoring spec.
ModelMonitoringObjectiveSpec_TabularObjective
Tabular monitoring objective.
ModelMonitoringOutputSpec
Specification for the export destination of monitoring results, including metrics, logs, etc.
ModelMonitoringSchema
The Model Monitoring Schema definition.
ModelMonitoringSchema_FieldSchema
Schema field definition.
ModelMonitoringService
A service for creating and managing Vertex AI Model moitoring. This includes ModelMonitor resources, ModelMonitoringJob resources.
ModelMonitoringSpec
Monitoring monitoring job spec. It outlines the specifications for monitoring objectives, notifications, and result exports.
ModelMonitoringStats
Represents the collection of statistics for a metric.
ModelMonitoringStatsAnomalies
Statistics and anomalies generated by Model Monitoring.
ModelMonitoringStatsAnomalies_FeatureHistoricStatsAnomalies
Historical Stats (and Anomalies) for a specific Feature.
ModelMonitoringStatsDataPoint
Represents a single statistics data point.
ModelMonitoringStatsDataPoint_TypedValue
Typed value of the statistics.
ModelMonitoringStatsDataPoint_TypedValue_DistributionDataValue
Summary statistics for a population of values.
ModelMonitoringTabularStats
A collection of data points that describes the time-varying values of a tabular metric.
ModelService
A service for managing Vertex AI's machine learning Models.
ModelSourceInfo
Detail description of the source information of the model.
ModelSourceInfo_ModelSourceType
Source of the model. Different from objective field, this ModelSourceType enum indicates the source from which the model was accessed or obtained, whereas the objective indicates the overall aim or function of this model.
ModelVersionCheckpoint
A proto representation of a Spanner-stored ModelVersionCheckpoint. The meaning of the fields is equivalent to their in-Spanner counterparts.
MutateDeployedIndexOperationMetadata
Runtime operation information for IndexEndpointService.MutateDeployedIndex.
MutateDeployedIndexRequest
Request message for IndexEndpointService.MutateDeployedIndex.
MutateDeployedIndexResponse
Response message for IndexEndpointService.MutateDeployedIndex.
MutateDeployedModelOperationMetadata
Runtime operation information for EndpointService.MutateDeployedModel.
MutateDeployedModelRequest
Request message for EndpointService.MutateDeployedModel.
MutateDeployedModelResponse
Response message for EndpointService.MutateDeployedModel.
NasJob
Represents a Neural Architecture Search (NAS) job.
NasJobOutput
Represents a uCAIP NasJob output.
NasJobOutput_MultiTrialJobOutput
The output of a multi-trial Neural Architecture Search (NAS) jobs.
NasJobSpec
Represents the spec of a NasJob.
NasJobSpec_MultiTrialAlgorithmSpec
The spec of multi-trial Neural Architecture Search (NAS).
NasJobSpec_MultiTrialAlgorithmSpec_MetricSpec
Represents a metric to optimize.
NasJobSpec_MultiTrialAlgorithmSpec_MetricSpec_GoalType
The available types of optimization goals.
NasJobSpec_MultiTrialAlgorithmSpec_MultiTrialAlgorithm
The available types of multi-trial algorithms.
NasJobSpec_MultiTrialAlgorithmSpec_SearchTrialSpec
Represent spec for search trials.
NasJobSpec_MultiTrialAlgorithmSpec_TrainTrialSpec
Represent spec for train trials.
NasTrial
Represents a uCAIP NasJob trial.
NasTrial_State
Describes a NasTrial state.
NasTrialDetail
Represents a NasTrial details along with its parameters. If there is a corresponding train NasTrial, the train NasTrial is also returned.
NearestNeighborQuery
A query to find a number of similar entities.
NearestNeighborQuery_Embedding
The embedding vector.
NearestNeighborQuery_NumericFilter
Numeric filter is used to search a subset of the entities by using boolean rules on numeric columns. For example: Database Point 0: {name: “a” value_int: 42} {name: “b” value_float: 1.0} Database Point 1: {name: “a” value_int: 10} {name: “b” value_float: 2.0} Database Point 2: {name: “a” value_int: -1} {name: “b” value_float: 3.0} Query: {name: “a” value_int: 12 operator: LESS} // Matches Point 1, 2 {name: “b” value_float: 2.0 operator: EQUAL} // Matches Point 1
NearestNeighborQuery_NumericFilter_Operator
Datapoints for which Operator is true relative to the query’s Value field will be allowlisted.
NearestNeighborQuery_Parameters
Parameters that can be overrided in each query to tune query latency and recall.
NearestNeighborQuery_StringFilter
String filter is used to search a subset of the entities by using boolean rules on string columns. For example: if a query specifies string filter with 'name = color, allow_tokens = {red, blue}, deny_tokens = {purple}',' then that query will match entities that are red or blue, but if those points are also purple, then they will be excluded even if they are red/blue. Only string filter is supported for now, numeric filter will be supported in the near future.
NearestNeighbors
Nearest neighbors for one query.
NearestNeighbors_Neighbor
A neighbor of the query vector.
NearestNeighborSearchOperationMetadata
Runtime operation metadata with regard to Matching Engine Index.
NearestNeighborSearchOperationMetadata_ContentValidationStats
NearestNeighborSearchOperationMetadata_RecordError
NearestNeighborSearchOperationMetadata_RecordError_RecordErrorType
Neighbor
Neighbors for example-based explanations.
NetworkSpec
Network spec.
NfsMount
Represents a mount configuration for Network File System (NFS) to mount.
NotebookEucConfig
The euc configuration of NotebookRuntimeTemplate.
NotebookExecutionJob
NotebookExecutionJob represents an instance of a notebook execution.
NotebookExecutionJob_CustomEnvironmentSpec
Compute configuration to use for an execution job.
NotebookExecutionJob_DataformRepositorySource
The Dataform Repository containing the input notebook.
NotebookExecutionJob_DirectNotebookSource
The content of the input notebook in ipynb format.
NotebookExecutionJob_GcsNotebookSource
The Cloud Storage uri for the input notebook.
NotebookExecutionJob_WorkbenchRuntime
Configuration for a Workbench Instances-based environment.
NotebookExecutionJobView
Views for Get/List NotebookExecutionJob
NotebookIdleShutdownConfig
The idle shutdown configuration of NotebookRuntimeTemplate, which contains the idle_timeout as required field.
NotebookRuntime
A runtime is a virtual machine allocated to a particular user for a particular Notebook file on temporary basis with lifetime. Default runtimes have a lifetime of 18 hours, while custom runtimes last for 6 months from their creation or last upgrade.
NotebookRuntime_HealthState
The substate of the NotebookRuntime to display health information.
NotebookRuntime_RuntimeState
The substate of the NotebookRuntime to display state of runtime. The resource of NotebookRuntime is in ACTIVE state for these sub state.
NotebookRuntimeTemplate
A template that specifies runtime configurations such as machine type, runtime version, network configurations, etc. Multiple runtimes can be created from a runtime template.
NotebookRuntimeTemplateRef
Points to a NotebookRuntimeTemplateRef.
NotebookRuntimeType
Represents a notebook runtime type.
NotebookService
The interface for Vertex Notebook service (a.k.a. Colab on Workbench).
NotebookSoftwareConfig
Notebook Software Config. This is passed to the backend when user makes software configurations in UI.
OutputConfig
Config for evaluation output.
OutputInfo
Describes the info for output of EvaluationService.EvaluateDataset.
PairwiseChoice
Pairwise prediction autorater preference.
PairwiseMetricInput
Input for pairwise metric.
PairwiseMetricInstance
Pairwise metric instance. Usually one instance corresponds to one row in an evaluation dataset.
PairwiseMetricResult
Spec for pairwise metric result.
PairwiseMetricSpec
Spec for pairwise metric.
PairwiseQuestionAnsweringQualityInput
Input for pairwise question answering quality metric.
PairwiseQuestionAnsweringQualityInstance
Spec for pairwise question answering quality instance.
PairwiseQuestionAnsweringQualityResult
Spec for pairwise question answering quality result.
PairwiseQuestionAnsweringQualitySpec
Spec for pairwise question answering quality score metric.
PairwiseSummarizationQualityInput
Input for pairwise summarization quality metric.
PairwiseSummarizationQualityInstance
Spec for pairwise summarization quality instance.
PairwiseSummarizationQualityResult
Spec for pairwise summarization quality result.
PairwiseSummarizationQualitySpec
Spec for pairwise summarization quality score metric.
Part
A datatype containing media that is part of a multi-part Content message.
PartnerModelTuningSpec
Tuning spec for Partner models.
PauseModelDeploymentMonitoringJobRequest
Request message for JobService.PauseModelDeploymentMonitoringJob.
PauseScheduleRequest
Request message for ScheduleService.PauseSchedule.
PersistentDiskSpec
Represents the spec of https://cloud.google.com/compute/docs/disks/persistent-disks options.
PersistentResource
Represents long-lasting resources that are dedicated to users to runs custom workloads. A PersistentResource can have multiple node pools and each node pool can have its own machine spec.
PersistentResource_State
Describes the PersistentResource state.
PersistentResourceService
A service for managing Vertex AI's machine learning PersistentResource.
PipelineFailurePolicy
Represents the failure policy of a pipeline. Currently, the default of a pipeline is that the pipeline will continue to run until no more tasks can be executed, also known as PIPELINE_FAILURE_POLICY_FAIL_SLOW. However, if a pipeline is set to PIPELINE_FAILURE_POLICY_FAIL_FAST, it will stop scheduling any new tasks when a task has failed. Any scheduled tasks will continue to completion.
PipelineJob
An instance of a machine learning PipelineJob.
PipelineJob_RuntimeConfig
The runtime config of a PipelineJob.
PipelineJob_RuntimeConfig_DefaultRuntime
The default runtime for the PipelineJob.
PipelineJob_RuntimeConfig_InputArtifact
The type of an input artifact.
PipelineJob_RuntimeConfig_PersistentResourceRuntimeDetail
Persistent resource based runtime detail. For more information, refer to https://cloud.google.com/vertex-ai/docs/training/persistent-resource-overview
PipelineJob_RuntimeConfig_PersistentResourceRuntimeDetail_TaskResourceUnavailableTimeoutBehavior
An enum that specifies the behavior to take if the timeout is reached.
PipelineJobDetail
The runtime detail of PipelineJob.
PipelineService
A service for creating and managing Vertex AI's pipelines. This includes both TrainingPipeline resources (used for AutoML and custom training) and PipelineJob resources (used for Vertex AI Pipelines).
PipelineState
Describes the state of a pipeline.
PipelineTaskDetail
The runtime detail of a task execution.
PipelineTaskDetail_ArtifactList
A list of artifact metadata.
PipelineTaskDetail_PipelineTaskStatus
A single record of the task status.
PipelineTaskDetail_State
Specifies state of TaskExecution
PipelineTaskExecutorDetail
The runtime detail of a pipeline executor.
PipelineTaskExecutorDetail_ContainerDetail
The detail of a container execution. It contains the job names of the lifecycle of a container execution.
PipelineTaskExecutorDetail_CustomJobDetail
The detailed info for a custom job executor.
PipelineTaskRerunConfig
User provided rerun config to submit a rerun pipelinejob. This includes
PipelineTaskRerunConfig_ArtifactList
A list of artifact metadata.
PipelineTaskRerunConfig_Inputs
Runtime inputs data of the task.
PipelineTemplateMetadata
Pipeline template metadata if PipelineJob.template_uri is from supported template registry. Currently, the only supported registry is Artifact Registry.
PointwiseMetricInput
Input for pointwise metric.
PointwiseMetricInstance
Pointwise metric instance. Usually one instance corresponds to one row in an evaluation dataset.
PointwiseMetricResult
Spec for pointwise metric result.
PointwiseMetricSpec
Spec for pointwise metric.
Port
Represents a network port in a container.
PostStartupScriptConfig
PostStartupScriptConfig_PostStartupScriptBehavior
PrebuiltVoiceConfig
The configuration for the prebuilt speaker to use.
PredefinedSplit
Assigns input data to training, validation, and test sets based on the value of a provided key.
PredictionService
A service for online predictions and explanations.
PredictLongRunningMetadata
Metadata for PredictLongRunning long running operations.
PredictLongRunningResponse
Response message for PredictionService.PredictLongRunning
PredictRequest
Request message for PredictionService.Predict.
PredictRequestResponseLoggingConfig
Configuration for logging request-response to a BigQuery table.
PredictResponse
Response message for PredictionService.Predict.
PredictSchemata
Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob.
Presets
Preset configuration for example-based explanations
Presets_Modality
Preset option controlling parameters for different modalities
Presets_Query
Preset option controlling parameters for query speed-precision trade-off
PreTunedModel
A pre-tuned model for continuous tuning.
PrivateEndpoints
PrivateEndpoints proto is used to provide paths for users to send requests privately. To send request via private service access, use predict_http_uri, explain_http_uri or health_http_uri. To send request via private service connect, use service_attachment.
PrivateServiceConnectConfig
Represents configuration for private service connect.
Probe
Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic.
Probe_ExecAction
ExecAction specifies a command to execute.
Probe_GrpcAction
GrpcAction checks the health of a container using a gRPC service.
Probe_HttpGetAction
HttpGetAction describes an action based on HTTP Get requests.
Probe_HttpHeader
HttpHeader describes a custom header to be used in HTTP probes
Probe_TcpSocketAction
TcpSocketAction probes the health of a container by opening a TCP socket connection.
PscAutomatedEndpoints
PscAutomatedEndpoints defines the output of the forwarding rule automatically created by each PscAutomationConfig.
PscautomationConfig
PSC config that is used to automatically create PSC endpoints in the user projects.
PscautomationState
The state of the PSC service automation.
PscInterfaceConfig
Configuration for PSC-I.
PublisherModel
A Model Garden Publisher Model.
PublisherModel_CallToAction
Actions could take on this Publisher Model.
PublisherModel_CallToAction_Deploy
Model metadata that is needed for UploadModel or DeployModel/CreateEndpoint requests.
PublisherModel_CallToAction_Deploy_DeployMetadata
Metadata information about the deployment for managing deployment config.
PublisherModel_CallToAction_DeployGke
Configurations for PublisherModel GKE deployment
PublisherModel_CallToAction_DeployVertex
Multiple setups to deploy the PublisherModel.
PublisherModel_CallToAction_OpenFineTuningPipelines
Open fine tuning pipelines.
PublisherModel_CallToAction_OpenNotebooks
Open notebooks.
PublisherModel_CallToAction_RegionalResourceReferences
The regional resource name or the URI. Key is region, e.g., us-central1, europe-west2, global, etc..
PublisherModel_CallToAction_ViewRestApi
Rest API docs.
PublisherModel_Documentation
A named piece of documentation.
PublisherModel_LaunchStage
An enum representing the launch stage of a PublisherModel.
PublisherModel_OpenSourceCategory
An enum representing the open source category of a PublisherModel.
PublisherModel_Parent
The information about the parent of a model.
PublisherModel_ResourceReference
Reference to a resource.
PublisherModel_VersionState
An enum representing the state of the PublicModelVersion.
PublisherModelConfig
This message contains configs of a publisher model.
PublisherModelEulaAcceptance
Response message for ModelGardenService.UpdatePublisherModelEula.
PublisherModelView
View enumeration of PublisherModel.
PurgeArtifactsMetadata
Details of operations that perform MetadataService.PurgeArtifacts.
PurgeArtifactsRequest
Request message for MetadataService.PurgeArtifacts.
PurgeArtifactsResponse
Response message for MetadataService.PurgeArtifacts.
PurgeContextsMetadata
Details of operations that perform MetadataService.PurgeContexts.
PurgeContextsRequest
Request message for MetadataService.PurgeContexts.
PurgeContextsResponse
Response message for MetadataService.PurgeContexts.
PurgeExecutionsMetadata
Details of operations that perform MetadataService.PurgeExecutions.
PurgeExecutionsRequest
Request message for MetadataService.PurgeExecutions.
PurgeExecutionsResponse
Response message for MetadataService.PurgeExecutions.
PythonPackageSpec
The spec of a Python packaged code.
QueryArtifactLineageSubgraphRequest
Request message for MetadataService.QueryArtifactLineageSubgraph.
QueryContextLineageSubgraphRequest
Request message for MetadataService.QueryContextLineageSubgraph.
QueryDeployedModelsRequest
Request message for QueryDeployedModels method.
QueryDeployedModelsResponse
Response message for QueryDeployedModels method.
QueryExecutionInputsAndOutputsRequest
Request message for MetadataService.QueryExecutionInputsAndOutputs.
QueryExtensionRequest
Request message for ExtensionExecutionService.QueryExtension.
QueryExtensionResponse
Response message for ExtensionExecutionService.QueryExtension.
QueryReasoningEngineRequest
Request message for ReasoningEngineExecutionService.Query.
QueryReasoningEngineResponse
Response message for ReasoningEngineExecutionService.Query
QuestionAnsweringCorrectnessInput
Input for question answering correctness metric.
QuestionAnsweringCorrectnessInstance
Spec for question answering correctness instance.
QuestionAnsweringCorrectnessResult
Spec for question answering correctness result.
QuestionAnsweringCorrectnessSpec
Spec for question answering correctness metric.
QuestionAnsweringHelpfulnessInput
Input for question answering helpfulness metric.
QuestionAnsweringHelpfulnessInstance
Spec for question answering helpfulness instance.
QuestionAnsweringHelpfulnessResult
Spec for question answering helpfulness result.
QuestionAnsweringHelpfulnessSpec
Spec for question answering helpfulness metric.
QuestionAnsweringQualityInput
Input for question answering quality metric.
QuestionAnsweringQualityInstance
Spec for question answering quality instance.
QuestionAnsweringQualityResult
Spec for question answering quality result.
QuestionAnsweringQualitySpec
Spec for question answering quality score metric.
QuestionAnsweringRelevanceInput
Input for question answering relevance metric.
QuestionAnsweringRelevanceInstance
Spec for question answering relevance instance.
QuestionAnsweringRelevanceResult
Spec for question answering relevance result.
QuestionAnsweringRelevanceSpec
Spec for question answering relevance metric.
RagChunk
A RagChunk includes the content of a chunk of a RagFile, and associated metadata.
RagChunk_PageSpan
Represents where the chunk starts and ends in the document.
RagContexts
Relevant contexts for one query.
RagContexts_Context
A context of the query.
RagCorpus
A RagCorpus is a RagFile container and a project can have multiple RagCorpora.
RagCorpus_CorpusTypeConfig
The config for the corpus type of the RagCorpus.
RagCorpus_CorpusTypeConfig_DocumentCorpus
Config for the document corpus.
RagCorpus_CorpusTypeConfig_MemoryCorpus
Config for the memory corpus.
RagEmbeddingModelConfig
Config for the embedding model to use for RAG.
RagEmbeddingModelConfig_HybridSearchConfig
Config for hybrid search.
RagEmbeddingModelConfig_SparseEmbeddingConfig
Configuration for sparse emebdding generation.
RagEmbeddingModelConfig_SparseEmbeddingConfig_Bm25
Message for BM25 parameters.
RagEmbeddingModelConfig_VertexPredictionEndpoint
Config representing a model hosted on Vertex Prediction Endpoint.
RagEngineConfig
Config for RagEngine.
RagFile
A RagFile contains user data for chunking, embedding and indexing.
RagFile_RagFileType
The type of the RagFile.
RagFileChunkingConfig
Specifies the size and overlap of chunks for RagFiles.
RagFileChunkingConfig_FixedLengthChunking
Specifies the fixed length chunking config.
RagFileMetadataConfig
Metadata config for RagFile.
RagFileParsingConfig
Specifies the parsing config for RagFiles.
RagFileParsingConfig_AdvancedParser
Specifies the advanced parsing for RagFiles.
RagFileParsingConfig_LayoutParser
Document AI Layout Parser config.
RagFileParsingConfig_LlmParser
Specifies the LLM parsing for RagFiles.
RagFileTransformationConfig
Specifies the transformation config for RagFiles.
RagManagedDbConfig
Configuration message for RagManagedDb used by RagEngine.
RagManagedDbConfig_Basic
Basic tier is a cost-effective and low compute tier suitable for the following cases:
RagManagedDbConfig_Enterprise
Deprecated: Please use Scaled tier instead. Enterprise tier offers production grade performance along with autoscaling functionality. It is suitable for customers with large amounts of data or performance sensitive workloads.
RagManagedDbConfig_Scaled
Scaled tier offers production grade performance along with autoscaling functionality. It is suitable for customers with large amounts of data or performance sensitive workloads.
RagManagedDbConfig_Unprovisioned
Disables the RAG Engine service and deletes all your data held within this service. This will halt the billing of the service.
RagQuery
A query to retrieve relevant contexts.
RagQuery_Ranking
Configurations for hybrid search results ranking.
RagRetrievalConfig
Specifies the context retrieval config.
RagRetrievalConfig_Filter
Config for filters.
RagRetrievalConfig_HybridSearch
Config for Hybrid Search.
RagRetrievalConfig_Ranking
Config for ranking and reranking.
RagRetrievalConfig_Ranking_LlmRanker
Config for LlmRanker.
RagRetrievalConfig_Ranking_RankService
Config for Rank Service.
RagVectorDbConfig
Config for the Vector DB to use for RAG.
RagVectorDbConfig_Pinecone
The config for the Pinecone.
RagVectorDbConfig_RagManagedDb
The config for the default RAG-managed Vector DB.
RagVectorDbConfig_RagManagedDb_Ann
Config for ANN search.
RagVectorDbConfig_RagManagedDb_Knn
Config for KNN search.
RagVectorDbConfig_VertexFeatureStore
The config for the Vertex Feature Store.
RagVectorDbConfig_VertexVectorSearch
The config for the Vertex Vector Search.
RagVectorDbConfig_Weaviate
The config for the Weaviate.
RawOutput
Raw output.
RawPredictRequest
Request message for PredictionService.RawPredict.
RayLogsSpec
Configuration for the Ray OSS Logs.
RayMetricSpec
Configuration for the Ray metrics.
RaySpec
Configuration information for the Ray cluster. For experimental launch, Ray cluster creation and Persistent cluster creation are 1:1 mapping: We will provision all the nodes within the Persistent cluster as Ray nodes.
ReadFeatureValuesRequest
Request message for FeaturestoreOnlineServingService.ReadFeatureValues.
ReadFeatureValuesResponse
Response message for FeaturestoreOnlineServingService.ReadFeatureValues.
ReadFeatureValuesResponse_EntityView
Entity view with Feature values.
ReadFeatureValuesResponse_EntityView_Data
Container to hold value(s), successive in time, for one Feature from the request.
ReadFeatureValuesResponse_FeatureDescriptor
Metadata for requested Features.
ReadFeatureValuesResponse_Header
Response header with metadata for the requested ReadFeatureValuesRequest.entity_type and Features.
ReadIndexDatapointsRequest
The request message for MatchService.ReadIndexDatapoints.
ReadIndexDatapointsResponse
The response message for MatchService.ReadIndexDatapoints.
ReadTensorboardBlobDataRequest
Request message for TensorboardService.ReadTensorboardBlobData.
ReadTensorboardBlobDataResponse
Response message for TensorboardService.ReadTensorboardBlobData.
ReadTensorboardSizeRequest
Request message for TensorboardService.ReadTensorboardSize.
ReadTensorboardSizeResponse
Response message for TensorboardService.ReadTensorboardSize.
ReadTensorboardTimeSeriesDataRequest
Request message for TensorboardService.ReadTensorboardTimeSeriesData.
ReadTensorboardTimeSeriesDataResponse
Response message for TensorboardService.ReadTensorboardTimeSeriesData.
ReadTensorboardUsageRequest
Request message for TensorboardService.ReadTensorboardUsage.
ReadTensorboardUsageResponse
Response message for TensorboardService.ReadTensorboardUsage.
ReadTensorboardUsageResponse_PerMonthUsageData
Per month usage data
ReadTensorboardUsageResponse_PerUserUsageData
Per user usage data.
ReasoningEngine
ReasoningEngine provides a customizable runtime for models to determine which actions to take and in which order.
ReasoningEngineContextSpec
Configuration for how Agent Engine sub-resources should manage context.
ReasoningEngineContextSpec_MemoryBankConfig
Specification for a Memory Bank.
ReasoningEngineContextSpec_MemoryBankConfig_GenerationConfig
Configuration for how to generate memories.
ReasoningEngineContextSpec_MemoryBankConfig_SimilaritySearchConfig
Configuration for how to perform similarity search on memories.
ReasoningEngineContextSpec_MemoryBankConfig_TtlConfig
Configuration for automatically setting the TTL ("time-to-live") of the memories in the Memory Bank.
ReasoningEngineContextSpec_MemoryBankConfig_TtlConfig_GranularTtlConfig
Configuration for TTL of the memories in the Memory Bank based on the action that created or updated the memory.
ReasoningEngineExecutionService
A service for executing queries on Reasoning Engine.
ReasoningEngineService
A service for managing Vertex AI's Reasoning Engines.
ReasoningEngineSpec
ReasoningEngine configurations
ReasoningEngineSpec_DeploymentSpec
The specification of a Reasoning Engine deployment.
ReasoningEngineSpec_PackageSpec
User-provided package specification, containing pickled object and package requirements.
ReasoningEngineSpec_SourceCodeSpec
Specification for deploying from source code.
ReasoningEngineSpec_SourceCodeSpec_InlineSource
Specifies source code provided as a byte stream.
ReasoningEngineSpec_SourceCodeSpec_PythonSpec
Specification for running a Python application from source.
RebaseTunedModelOperationMetadata
Runtime operation information for GenAiTuningService.RebaseTunedModel.
RebaseTunedModelRequest
Request message for GenAiTuningService.RebaseTunedModel.
RebootPersistentResourceOperationMetadata
Details of operations that perform reboot PersistentResource.
RebootPersistentResourceRequest
Request message for PersistentResourceService.RebootPersistentResource.
RecommendSpecRequest
Request message for ModelService.RecommendSpec.
RecommendSpecResponse
Response message for ModelService.RecommendSpec.
RecommendSpecResponse_MachineAndModelContainerSpec
A machine and model container spec.
RecommendSpecResponse_Recommendation
Recommendation of one deployment option for the given custom weights model in one region. Contains the machine and container spec, and user accelerator quota state.
RecommendSpecResponse_Recommendation_QuotaState
The user accelerator quota state.
RemoveContextChildrenRequest
Request message for MetadataService.DeleteContextChildrenRequest.
RemoveContextChildrenResponse
Response message for MetadataService.RemoveContextChildren.
RemoveDatapointsRequest
Request message for IndexService.RemoveDatapoints
RemoveDatapointsResponse
Response message for IndexService.RemoveDatapoints
RemoveExamplesRequest
Request message for ExampleStoreService.RemoveExamples.
RemoveExamplesResponse
Response message for ExampleStoreService.RemoveExamples.
ReservationAffinity
A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity.
ReservationAffinity_Type
Identifies a type of reservation affinity.
ResourcePool
Represents the spec of a group of resources of the same type, for example machine type, disk, and accelerators, in a PersistentResource.
ResourcePool_AutoscalingSpec
The min/max number of replicas allowed if enabling autoscaling
ResourceRuntime
Persistent Cluster runtime information as output
ResourceRuntimeSpec
Configuration for the runtime on a PersistentResource instance, including but not limited to:
ResourcesConsumed
Statistics information about resource consumption.
RestoreDatasetVersionOperationMetadata
Runtime operation information for DatasetService.RestoreDatasetVersion.
RestoreDatasetVersionRequest
Request message for DatasetService.RestoreDatasetVersion.
ResumeModelDeploymentMonitoringJobRequest
Request message for JobService.ResumeModelDeploymentMonitoringJob.
ResumeScheduleRequest
Request message for ScheduleService.ResumeSchedule.
Retrieval
Defines a retrieval tool that model can call to access external knowledge.
RetrievalConfig
Retrieval config.
RetrievalMetadata
Metadata related to retrieval in the grounding flow.
RetrieveContextsRequest
Request message for VertexRagService.RetrieveContexts.
RetrieveContextsRequest_VertexRagStore
The data source for Vertex RagStore.
RetrieveContextsRequest_VertexRagStore_RagResource
The definition of the Rag resource.
RetrieveContextsResponse
Response message for VertexRagService.RetrieveContexts.
RetrieveMemoriesRequest
Request message for MemoryBankService.RetrieveMemories.
RetrieveMemoriesRequest_SimilaritySearchParams
Parameters for semantic similarity search based retrieval.
RetrieveMemoriesRequest_SimpleRetrievalParams
Parameters for simple (non-similarity search) retrieval.
RetrieveMemoriesResponse
Response message for MemoryBankService.RetrieveMemories.
RetrieveMemoriesResponse_RetrievedMemory
A retrieved memory.
RolloutOptions
Configuration for rolling deployments.
RougeInput
Input for rouge metric.
RougeInstance
Spec for rouge instance.
RougeMetricValue
Rouge metric value for an instance.
RougeResults
Results for rouge metric.
RougeSpec
Spec for rouge score metric - calculates the recall of n-grams in prediction as compared to reference - returns a score ranging between 0 and 1.
RubricBasedInstructionFollowingInput
Instance and metric spec for RubricBasedInstructionFollowing metric.
RubricBasedInstructionFollowingInstance
Instance for RubricBasedInstructionFollowing metric - one instance corresponds to one row in an evaluation dataset.
RubricBasedInstructionFollowingResult
Result for RubricBasedInstructionFollowing metric.
RubricBasedInstructionFollowingSpec
Spec for RubricBasedInstructionFollowing metric - returns rubrics and verdicts corresponding to rubrics along with overall score.
RubricCritiqueResult
Rubric critique result.
RuntimeArtifact
The definition of a runtime artifact.
RuntimeConfig
Runtime configuration to run the extension.
RuntimeConfig_CodeInterpreterRuntimeConfig
RuntimeConfig_VertexAisearchRuntimeConfig
SafetyInput
Input for safety metric.
SafetyInstance
Spec for safety instance.
SafetyRating
Safety rating corresponding to the generated content.
SafetyRating_HarmProbability
Harm probability levels in the content.
SafetyRating_HarmSeverity
Harm severity levels.
SafetyResult
Spec for safety result.
SafetySetting
Safety settings.
SafetySetting_HarmBlockMethod
Probability vs severity.
SafetySetting_HarmBlockThreshold
Probability based thresholds levels for blocking.
SafetySpec
Spec for safety metric.
SampleConfig
Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
SampleConfig_SampleStrategy
Sample strategy decides which subset of DataItems should be selected for human labeling in every batch.
SampledShapleyAttribution
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features.
SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
SamplingStrategy_RandomSampleConfig
Requests are randomly selected.
SavedQuery
A SavedQuery is a view of the dataset. It references a subset of annotations by problem type and filters.
Scalar
One point viewable on a scalar metric plot.
Schedule
An instance of a Schedule periodically schedules runs to make API calls based on user specified time specification and API request type.
Schedule_RunResponse
Status of a scheduled run.
Schedule_State
Possible state of the schedule.
ScheduleConfig
Schedule configuration for the FeatureMonitor.
ScheduleService
A service for creating and managing Vertex AI's Schedule resources to periodically launch shceudled runs to make API calls.
Scheduling
All parameters related to queuing and scheduling of custom jobs.
Scheduling_Strategy
Optional. This determines which type of scheduling strategy to use. Right now users have two options such as STANDARD which will use regular on demand resources to schedule the job, the other is SPOT which would leverage spot resources alongwith regular resources to schedule the job.
Schema
Schema is used to define the format of input/output data. Represents a select subset of an OpenAPI 3.0 schema object. More fields may be added in the future as needed.
SearchDataItemsRequest
Request message for DatasetService.SearchDataItems.
SearchDataItemsRequest_OrderByAnnotation
Expression that allows ranking results based on annotation's property.
SearchDataItemsResponse
Response message for DatasetService.SearchDataItems.
SearchEntryPoint
Google search entry point.
SearchExamplesRequest
Request message for ExampleStoreService.SearchExamples.
SearchExamplesResponse
Response message for ExampleStoreService.SearchExamples.
SearchExamplesResponse_SimilarExample
The result of the similar example.
SearchFeaturesRequest
Request message for FeaturestoreService.SearchFeatures.
SearchFeaturesResponse
Response message for FeaturestoreService.SearchFeatures.
SearchMigratableResourcesRequest
Request message for MigrationService.SearchMigratableResources.
SearchMigratableResourcesResponse
Response message for MigrationService.SearchMigratableResources.
SearchModelDeploymentMonitoringStatsAnomaliesRequest
Request message for JobService.SearchModelDeploymentMonitoringStatsAnomalies.
SearchModelDeploymentMonitoringStatsAnomaliesRequest_StatsAnomaliesObjective
Stats requested for specific objective.
SearchModelDeploymentMonitoringStatsAnomaliesResponse
Response message for JobService.SearchModelDeploymentMonitoringStatsAnomalies.
SearchModelMonitoringAlertsRequest
Request message for ModelMonitoringService.SearchModelMonitoringAlerts.
SearchModelMonitoringAlertsResponse
Response message for ModelMonitoringService.SearchModelMonitoringAlerts.
SearchModelMonitoringStatsFilter
Filter for searching ModelMonitoringStats.
SearchModelMonitoringStatsFilter_TabularStatsFilter
Tabular statistics filter.
SearchModelMonitoringStatsRequest
Request message for ModelMonitoringService.SearchModelMonitoringStats.
SearchModelMonitoringStatsResponse
Response message for ModelMonitoringService.SearchModelMonitoringStats.
SearchNearestEntitiesRequest
The request message for FeatureOnlineStoreService.SearchNearestEntities.
SearchNearestEntitiesResponse
Response message for FeatureOnlineStoreService.SearchNearestEntities
SecretEnvVar
Represents an environment variable where the value is a secret in Cloud Secret Manager.
SecretRef
Reference to a secret stored in the Cloud Secret Manager that will provide the value for this environment variable.
Segment
Segment of the content.
ServiceAccountSpec
Configuration for the use of custom service account to run the workloads.
Session
A session contains a set of actions between users and Vertex agents.
SessionEvent
An event represents a message from either the user or agent.
SessionService
The service that manages Vertex Session related resources.
SetPublisherModelConfigOperationMetadata
Runtime operation information for EndpointService.SetPublisherModelConfig.
SetPublisherModelConfigRequest
Request message for EndpointService.SetPublisherModelConfig.
SharePointSources
The SharePointSources to pass to ImportRagFiles.
SharePointSources_SharePointSource
An individual SharePointSource.
ShieldedVmConfig
A set of Shielded Instance options. See Images using supported Shielded VM features.
SlackSource
The Slack source for the ImportRagFilesRequest.
SlackSource_SlackChannels
SlackChannels contains the Slack channels and corresponding access token.
SlackSource_SlackChannels_SlackChannel
SlackChannel contains the Slack channel ID and the time range to import.
SmoothGradConfig
Config for SmoothGrad approximation of gradients.
SpecialistPool
SpecialistPool represents customers' own workforce to work on their data labeling jobs. It includes a group of specialist managers and workers. Managers are responsible for managing the workers in this pool as well as customers' data labeling jobs associated with this pool. Customers create specialist pool as well as start data labeling jobs on Cloud, managers and workers handle the jobs using CrowdCompute console.
SpecialistPoolService
A service for creating and managing Customer SpecialistPools. When customers start Data Labeling jobs, they can reuse/create Specialist Pools to bring their own Specialists to label the data. Customers can add/remove Managers for the Specialist Pool on Cloud console, then Managers will get email notifications to manage Specialists and tasks on CrowdCompute console.
SpeculativeDecodingSpec
Configuration for Speculative Decoding.
SpeculativeDecodingSpec_DraftModelSpeculation
Draft model speculation works by using the smaller model to generate candidate tokens for speculative decoding.
SpeculativeDecodingSpec_NgramSpeculation
N-Gram speculation works by trying to find matching tokens in the previous prompt sequence and use those as speculation for generating new tokens.
SpeechConfig
The speech generation config.
StartNotebookRuntimeOperationMetadata
Metadata information for NotebookService.StartNotebookRuntime.
StartNotebookRuntimeRequest
Request message for NotebookService.StartNotebookRuntime.
StartNotebookRuntimeResponse
Response message for NotebookService.StartNotebookRuntime.
StopNotebookRuntimeOperationMetadata
Metadata information for NotebookService.StopNotebookRuntime.
StopNotebookRuntimeRequest
Request message for NotebookService.StopNotebookRuntime.
StopNotebookRuntimeResponse
Response message for NotebookService.StopNotebookRuntime.
StopTrialRequest
Request message for VizierService.StopTrial.
StoredContentsExample
A ContentsExample to be used with GenerateContent alongside information required for storage and retrieval with Example Store.
StoredContentsExample_SearchKeyGenerationMethod
Options for generating the search key from the conversation history.
StoredContentsExample_SearchKeyGenerationMethod_LastEntry
Configuration for using only the last entry of the conversation history as the search key.
StoredContentsExampleFilter
The metadata filters that will be used to remove or fetch StoredContentsExamples. If a field is unspecified, then no filtering for that field will be applied.
StoredContentsExampleParameters
The metadata filters that will be used to search StoredContentsExamples. If a field is unspecified, then no filtering for that field will be applied
StoredContentsExampleParameters_ContentSearchKey
The chat history to use to generate the search key for retrieval.
StratifiedSplit
Assigns input data to the training, validation, and test sets so that the distribution of values found in the categorical column (as specified by the key field) is mirrored within each split. The fraction values determine the relative sizes of the splits.
StreamDirectPredictRequest
Request message for PredictionService.StreamDirectPredict.
StreamDirectPredictResponse
Response message for PredictionService.StreamDirectPredict.
StreamDirectRawPredictRequest
Request message for PredictionService.StreamDirectRawPredict.
StreamDirectRawPredictResponse
Response message for PredictionService.StreamDirectRawPredict.
StreamingFetchFeatureValuesRequest
Request message for FeatureOnlineStoreService.StreamingFetchFeatureValues. For the entities requested, all features under the requested feature view will be returned.
StreamingFetchFeatureValuesResponse
Response message for FeatureOnlineStoreService.StreamingFetchFeatureValues.
StreamingPredictRequest
Request message for PredictionService.StreamingPredict.
StreamingPredictResponse
Response message for PredictionService.StreamingPredict.
StreamingRawPredictRequest
Request message for PredictionService.StreamingRawPredict.
StreamingRawPredictResponse
Response message for PredictionService.StreamingRawPredict.
StreamingReadFeatureValuesRequest
Request message for FeaturestoreOnlineServingService.StreamingReadFeatureValues.
StreamQueryReasoningEngineRequest
Request message for ReasoningEngineExecutionService.StreamQuery.
StreamRawPredictRequest
Request message for PredictionService.StreamRawPredict.
StringArray
A list of string values.
StructFieldValue
One field of a Struct (or object) type feature value.
StructValue
Struct (or object) type feature value.
Study
A message representing a Study.
Study_State
Describes the Study state.
StudySpec
Represents specification of a Study.
StudySpec_Algorithm
The available search algorithms for the Study.
StudySpec_ConvexAutomatedStoppingSpec
Configuration for ConvexAutomatedStoppingSpec. When there are enough completed trials (configured by min_measurement_count), for pending trials with enough measurements and steps, the policy first computes an overestimate of the objective value at max_num_steps according to the slope of the incomplete objective value curve. No prediction can be made if the curve is completely flat. If the overestimation is worse than the best objective value of the completed trials, this pending trial will be early-stopped, but a last measurement will be added to the pending trial with max_num_steps and predicted objective value from the autoregression model.
StudySpec_ConvexStopConfig
Configuration for ConvexStopPolicy.
StudySpec_DecayCurveAutomatedStoppingSpec
The decay curve automated stopping rule builds a Gaussian Process Regressor to predict the final objective value of a Trial based on the already completed Trials and the intermediate measurements of the current Trial. Early stopping is requested for the current Trial if there is very low probability to exceed the optimal value found so far.
StudySpec_MeasurementSelectionType
This indicates which measurement to use if/when the service automatically selects the final measurement from previously reported intermediate measurements. Choose this based on two considerations: A) Do you expect your measurements to monotonically improve? If so, choose LAST_MEASUREMENT. On the other hand, if you're in a situation where your system can "over-train" and you expect the performance to get better for a while but then start declining, choose BEST_MEASUREMENT. B) Are your measurements significantly noisy and/or irreproducible? If so, BEST_MEASUREMENT will tend to be over-optimistic, and it may be better to choose LAST_MEASUREMENT. If both or neither of (A) and (B) apply, it doesn't matter which selection type is chosen.
StudySpec_MedianAutomatedStoppingSpec
The median automated stopping rule stops a pending Trial if the Trial's best objective_value is strictly below the median 'performance' of all completed Trials reported up to the Trial's last measurement. Currently, 'performance' refers to the running average of the objective values reported by the Trial in each measurement.
StudySpec_MetricSpec
Represents a metric to optimize.
StudySpec_MetricSpec_GoalType
The available types of optimization goals.
StudySpec_MetricSpec_SafetyMetricConfig
Used in safe optimization to specify threshold levels and risk tolerance.
StudySpec_ObservationNoise
Describes the noise level of the repeated observations.
StudySpec_ParameterSpec
Represents a single parameter to optimize.
StudySpec_ParameterSpec_CategoricalValueSpec
Value specification for a parameter in CATEGORICAL type.
StudySpec_ParameterSpec_ConditionalParameterSpec
Represents a parameter spec with condition from its parent parameter.
StudySpec_ParameterSpec_ConditionalParameterSpec_CategoricalValueCondition
Represents the spec to match categorical values from parent parameter.
StudySpec_ParameterSpec_ConditionalParameterSpec_DiscreteValueCondition
Represents the spec to match discrete values from parent parameter.
StudySpec_ParameterSpec_ConditionalParameterSpec_IntValueCondition
Represents the spec to match integer values from parent parameter.
StudySpec_ParameterSpec_DiscreteValueSpec
Value specification for a parameter in DISCRETE type.
StudySpec_ParameterSpec_DoubleValueSpec
Value specification for a parameter in DOUBLE type.
StudySpec_ParameterSpec_IntegerValueSpec
Value specification for a parameter in INTEGER type.
StudySpec_ParameterSpec_ScaleType
The type of scaling that should be applied to this parameter.
StudySpec_StudyStoppingConfig
The configuration (stopping conditions) for automated stopping of a Study. Conditions include trial budgets, time budgets, and convergence detection.
StudySpec_TransferLearningConfig
This contains flag for manually disabling transfer learning for a study. The names of prior studies being used for transfer learning (if any) are also listed here.
StudyTimeConstraint
Time-based Constraint for Study
SuggestTrialsMetadata
Details of operations that perform Trials suggestion.
SuggestTrialsRequest
Request message for VizierService.SuggestTrials.
SuggestTrialsResponse
Response message for VizierService.SuggestTrials.
SummarizationHelpfulnessInput
Input for summarization helpfulness metric.
SummarizationHelpfulnessInstance
Spec for summarization helpfulness instance.
SummarizationHelpfulnessResult
Spec for summarization helpfulness result.
SummarizationHelpfulnessSpec
Spec for summarization helpfulness score metric.
SummarizationQualityInput
Input for summarization quality metric.
SummarizationQualityInstance
Spec for summarization quality instance.
SummarizationQualityResult
Spec for summarization quality result.
SummarizationQualitySpec
Spec for summarization quality score metric.
SummarizationVerbosityInput
Input for summarization verbosity metric.
SummarizationVerbosityInstance
Spec for summarization verbosity instance.
SummarizationVerbosityResult
Spec for summarization verbosity result.
SummarizationVerbositySpec
Spec for summarization verbosity score metric.
SupervisedHyperParameters
Hyperparameters for SFT.
SupervisedHyperParameters_AdapterSize
Supported adapter sizes for tuning.
SupervisedTuningDatasetDistribution
Dataset distribution for Supervised Tuning.
SupervisedTuningDatasetDistribution_DatasetBucket
Dataset bucket used to create a histogram for the distribution given a population of values.
SupervisedTuningDataStats
Tuning data statistics for Supervised Tuning.
SupervisedTuningSpec
Tuning Spec for Supervised Tuning for first party models.
SupervisedTuningSpec_TuningMode
Supported tuning modes.
SyncFeatureViewRequest
Request message for FeatureOnlineStoreAdminService.SyncFeatureView.
SyncFeatureViewResponse
Response message for FeatureOnlineStoreAdminService.SyncFeatureView.
Tensor
A tensor value type.
Tensor_DataType
Data type of the tensor.
Tensorboard
Tensorboard is a physical database that stores users' training metrics. A default Tensorboard is provided in each region of a Google Cloud project. If needed users can also create extra Tensorboards in their projects.
TensorboardBlob
One blob (e.g, image, graph) viewable on a blob metric plot.
TensorboardBlobSequence
One point viewable on a blob metric plot, but mostly just a wrapper message to work around repeated fields can't be used directly within oneof fields.
TensorboardExperiment
A TensorboardExperiment is a group of TensorboardRuns, that are typically the results of a training job run, in a Tensorboard.
TensorboardRun
TensorboardRun maps to a specific execution of a training job with a given set of hyperparameter values, model definition, dataset, etc
TensorboardService
TensorboardService
TensorboardTensor
One point viewable on a tensor metric plot.
TensorboardTimeSeries
TensorboardTimeSeries maps to times series produced in training runs
TensorboardTimeSeries_Metadata
Describes metadata for a TensorboardTimeSeries.
TensorboardTimeSeries_ValueType
An enum representing the value type of a TensorboardTimeSeries.
TfrecordDestination
The storage details for TFRecord output content.
ThresholdConfig
The config for feature monitoring threshold.
TimeSeriesData
All the data stored in a TensorboardTimeSeries.
TimeSeriesDataPoint
A TensorboardTimeSeries data point.
TimestampSplit
Assigns input data to training, validation, and test sets based on a provided timestamps. The youngest data pieces are assigned to training set, next to validation set, and the oldest to the test set.
TokensInfo
Tokens info with a list of tokens and the corresponding list of token ids.
Tool
Tool details that the model may use to generate response.
Tool_CodeExecution
Tool that executes code generated by the model, and automatically returns the result to the model.
Tool_ComputerUse
Tool to support computer use.
Tool_ComputerUse_Environment
Represents the environment being operated, such as a web browser.
Tool_GoogleSearch
GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
Tool_PhishBlockThreshold
These are available confidence level user can set to block malicious urls with chosen confidence and above. For understanding different confidence of webrisk, please refer to https://cloud.google.com/web-risk/docs/reference/rpc/google.cloud.webrisk.v1eap1#confidencelevel
ToolCall
Spec for tool call.
ToolCallValidInput
Input for tool call valid metric.
ToolCallValidInstance
Spec for tool call valid instance.
ToolCallValidMetricValue
Tool call valid metric value for an instance.
ToolCallValidResults
Results for tool call valid metric.
ToolCallValidSpec
Spec for tool call valid metric.
ToolConfig
Tool config. This config is shared for all tools provided in the request.
ToolNameMatchInput
Input for tool name match metric.
ToolNameMatchInstance
Spec for tool name match instance.
ToolNameMatchMetricValue
Tool name match metric value for an instance.
ToolNameMatchResults
Results for tool name match metric.
ToolNameMatchSpec
Spec for tool name match metric.
ToolParameterKeyMatchInput
Input for tool parameter key match metric.
ToolParameterKeyMatchInstance
Spec for tool parameter key match instance.
ToolParameterKeyMatchMetricValue
Tool parameter key match metric value for an instance.
ToolParameterKeyMatchResults
Results for tool parameter key match metric.
ToolParameterKeyMatchSpec
Spec for tool parameter key match metric.
ToolParameterKvmatchInput
Input for tool parameter key value match metric.
ToolParameterKvmatchInstance
Spec for tool parameter key value match instance.
ToolParameterKvmatchMetricValue
Tool parameter key value match metric value for an instance.
ToolParameterKvmatchResults
Results for tool parameter key value match metric.
ToolParameterKvmatchSpec
Spec for tool parameter key value match metric.
ToolUseExample
A single example of the tool usage.
ToolUseExample_ExtensionOperation
Identifies one operation of the extension.
TrainingConfig
CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.
TrainingPipeline
The TrainingPipeline orchestrates tasks associated with training a Model. It always executes the training task, and optionally may also export data from Vertex AI's Dataset which becomes the training input, upload the Model to Vertex AI, and evaluate the Model.
Trajectory
Spec for trajectory.
TrajectoryAnyOrderMatchInput
Instances and metric spec for TrajectoryAnyOrderMatch metric.
TrajectoryAnyOrderMatchInstance
Spec for TrajectoryAnyOrderMatch instance.
TrajectoryAnyOrderMatchMetricValue
TrajectoryAnyOrderMatch metric value for an instance.
TrajectoryAnyOrderMatchResults
Results for TrajectoryAnyOrderMatch metric.
TrajectoryAnyOrderMatchSpec
Spec for TrajectoryAnyOrderMatch metric - returns 1 if all tool calls in the reference trajectory appear in the predicted trajectory in any order, else 0.
TrajectoryExactMatchInput
Instances and metric spec for TrajectoryExactMatch metric.
TrajectoryExactMatchInstance
Spec for TrajectoryExactMatch instance.
TrajectoryExactMatchMetricValue
TrajectoryExactMatch metric value for an instance.
TrajectoryExactMatchResults
Results for TrajectoryExactMatch metric.
TrajectoryExactMatchSpec
Spec for TrajectoryExactMatch metric - returns 1 if tool calls in the reference trajectory exactly match the predicted trajectory, else 0.
TrajectoryInOrderMatchInput
Instances and metric spec for TrajectoryInOrderMatch metric.
TrajectoryInOrderMatchInstance
Spec for TrajectoryInOrderMatch instance.
TrajectoryInOrderMatchMetricValue
TrajectoryInOrderMatch metric value for an instance.
TrajectoryInOrderMatchResults
Results for TrajectoryInOrderMatch metric.
TrajectoryInOrderMatchSpec
Spec for TrajectoryInOrderMatch metric - returns 1 if tool calls in the reference trajectory appear in the predicted trajectory in the same order, else 0.
TrajectoryPrecisionInput
Instances and metric spec for TrajectoryPrecision metric.
TrajectoryPrecisionInstance
Spec for TrajectoryPrecision instance.
TrajectoryPrecisionMetricValue
TrajectoryPrecision metric value for an instance.
TrajectoryPrecisionResults
Results for TrajectoryPrecision metric.
TrajectoryPrecisionSpec
Spec for TrajectoryPrecision metric - returns a float score based on average precision of individual tool calls.
TrajectoryRecallInput
Instances and metric spec for TrajectoryRecall metric.
TrajectoryRecallInstance
Spec for TrajectoryRecall instance.
TrajectoryRecallMetricValue
TrajectoryRecall metric value for an instance.
TrajectoryRecallResults
Results for TrajectoryRecall metric.
TrajectoryRecallSpec
Spec for TrajectoryRecall metric - returns a float score based on average recall of individual tool calls.
TrajectorySingleToolUseInput
Instances and metric spec for TrajectorySingleToolUse metric.
TrajectorySingleToolUseInstance
Spec for TrajectorySingleToolUse instance.
TrajectorySingleToolUseMetricValue
TrajectorySingleToolUse metric value for an instance.
TrajectorySingleToolUseResults
Results for TrajectorySingleToolUse metric.
TrajectorySingleToolUseSpec
Spec for TrajectorySingleToolUse metric - returns 1 if tool is present in the predicted trajectory, else 0.
Trial
A message representing a Trial. A Trial contains a unique set of Parameters that has been or will be evaluated, along with the objective metrics got by running the Trial.
Trial_Parameter
A message representing a parameter to be tuned.
Trial_State
Describes a Trial state.
TrialContext
TunedModel
The Model Registry Model and Online Prediction Endpoint associated with this TuningJob.
TunedModelCheckpoint
TunedModelCheckpoint for the Tuned Model of a Tuning Job.
TunedModelRef
TunedModel Reference for legacy model migration.
TuningDataStats
The tuning data statistic values for TuningJob.
TuningJob
Represents a TuningJob that runs with Google owned models.
Type
Type contains the list of OpenAPI data types as defined by https://swagger.io/docs/specification/data-models/data-types/
UndeployIndexOperationMetadata
Runtime operation information for IndexEndpointService.UndeployIndex.
UndeployIndexRequest
Request message for IndexEndpointService.UndeployIndex.
UndeployIndexResponse
Response message for IndexEndpointService.UndeployIndex.
UndeployModelOperationMetadata
Runtime operation information for EndpointService.UndeployModel.
UndeployModelRequest
Request message for EndpointService.UndeployModel.
UndeployModelResponse
Response message for EndpointService.UndeployModel.
UnmanagedContainerModel
Contains model information necessary to perform batch prediction without requiring a full model import.
UpdateArtifactRequest
Request message for MetadataService.UpdateArtifact.
UpdateCachedContentRequest
Request message for GenAiCacheService.UpdateCachedContent. Only expire_time or ttl can be updated.
UpdateContextRequest
Request message for MetadataService.UpdateContext.
UpdateDatasetRequest
Request message for DatasetService.UpdateDataset.
UpdateDatasetVersionRequest
Request message for DatasetService.UpdateDatasetVersion.
UpdateDeploymentResourcePoolOperationMetadata
Runtime operation information for UpdateDeploymentResourcePool method.
UpdateDeploymentResourcePoolRequest
Request message for UpdateDeploymentResourcePool method.
UpdateEndpointLongRunningRequest
Request message for EndpointService.UpdateEndpointLongRunning.
UpdateEndpointOperationMetadata
Runtime operation information for EndpointService.UpdateEndpointLongRunning.
UpdateEndpointRequest
Request message for EndpointService.UpdateEndpoint.
UpdateEntityTypeRequest
Request message for FeaturestoreService.UpdateEntityType.
UpdateExampleStoreOperationMetadata
Details of ExampleStoreService.UpdateExampleStore operation.
UpdateExampleStoreRequest
Request message for ExampleStoreService.UpdateExampleStore.
UpdateExecutionRequest
Request message for MetadataService.UpdateExecution.
UpdateExplanationDatasetOperationMetadata
Runtime operation information for ModelService.UpdateExplanationDataset.
UpdateExplanationDatasetRequest
Request message for ModelService.UpdateExplanationDataset.
UpdateExplanationDatasetResponse
Response message of ModelService.UpdateExplanationDataset operation.
UpdateExtensionRequest
Request message for ExtensionRegistryService.UpdateExtension.
UpdateFeatureGroupOperationMetadata
Details of operations that perform update FeatureGroup.
UpdateFeatureGroupRequest
Request message for FeatureRegistryService.UpdateFeatureGroup.
UpdateFeatureMonitorOperationMetadata
Details of operations that perform update FeatureMonitor.
UpdateFeatureMonitorRequest
Request message for FeatureRegistryService.UpdateFeatureMonitor.
UpdateFeatureOnlineStoreOperationMetadata
Details of operations that perform update FeatureOnlineStore.
UpdateFeatureOnlineStoreRequest
Request message for FeatureOnlineStoreAdminService.UpdateFeatureOnlineStore.
UpdateFeatureOperationMetadata
Details of operations that perform update Feature.
UpdateFeatureRequest
Request message for FeaturestoreService.UpdateFeature. Request message for FeatureRegistryService.UpdateFeature.
UpdateFeaturestoreOperationMetadata
Details of operations that perform update Featurestore.
UpdateFeaturestoreRequest
Request message for FeaturestoreService.UpdateFeaturestore.
UpdateFeatureViewOperationMetadata
Details of operations that perform update FeatureView.
UpdateFeatureViewRequest
Request message for FeatureOnlineStoreAdminService.UpdateFeatureView.
UpdateIndexEndpointRequest
Request message for IndexEndpointService.UpdateIndexEndpoint.
UpdateIndexOperationMetadata
Runtime operation information for IndexService.UpdateIndex.
UpdateIndexRequest
Request message for IndexService.UpdateIndex.
UpdateMemoryOperationMetadata
Details of MemoryBankService.UpdateMemory operation.
UpdateMemoryRequest
Request message for MemoryBankService.UpdateMemory.
UpdateModelDeploymentMonitoringJobOperationMetadata
Runtime operation information for JobService.UpdateModelDeploymentMonitoringJob.
UpdateModelDeploymentMonitoringJobRequest
Request message for JobService.UpdateModelDeploymentMonitoringJob.
UpdateModelMonitorOperationMetadata
Runtime operation information for ModelMonitoringService.UpdateModelMonitor.
UpdateModelMonitorRequest
Request message for ModelMonitoringService.UpdateModelMonitor.
UpdateModelRequest
Request message for ModelService.UpdateModel.
UpdateNotebookRuntimeTemplateRequest
Request message for NotebookService.UpdateNotebookRuntimeTemplate.
UpdatePersistentResourceOperationMetadata
Details of operations that perform update PersistentResource.
UpdatePersistentResourceRequest
Request message for UpdatePersistentResource method.
UpdateRagCorpusOperationMetadata
Runtime operation information for VertexRagDataService.UpdateRagCorpus.
UpdateRagCorpusRequest
Request message for VertexRagDataService.UpdateRagCorpus.
UpdateRagEngineConfigOperationMetadata
Runtime operation information for VertexRagDataService.UpdateRagEngineConfig.
UpdateRagEngineConfigRequest
Request message for VertexRagDataService.UpdateRagEngineConfig.
UpdateReasoningEngineOperationMetadata
Details of ReasoningEngineService.UpdateReasoningEngine operation.
UpdateReasoningEngineRequest
Request message for ReasoningEngineService.UpdateReasoningEngine.
UpdateScheduleRequest
Request message for ScheduleService.UpdateSchedule.
UpdateSessionRequest
Request message for SessionService.UpdateSession.
UpdateSpecialistPoolOperationMetadata
Runtime operation metadata for SpecialistPoolService.UpdateSpecialistPool.
UpdateSpecialistPoolRequest
Request message for SpecialistPoolService.UpdateSpecialistPool.
UpdateTensorboardExperimentRequest
Request message for TensorboardService.UpdateTensorboardExperiment.
UpdateTensorboardOperationMetadata
Details of operations that perform update Tensorboard.
UpdateTensorboardRequest
Request message for TensorboardService.UpdateTensorboard.
UpdateTensorboardRunRequest
Request message for TensorboardService.UpdateTensorboardRun.
UpdateTensorboardTimeSeriesRequest
Request message for TensorboardService.UpdateTensorboardTimeSeries.
UpgradeNotebookRuntimeOperationMetadata
Metadata information for NotebookService.UpgradeNotebookRuntime.
UpgradeNotebookRuntimeRequest
Request message for NotebookService.UpgradeNotebookRuntime.
UpgradeNotebookRuntimeResponse
Response message for NotebookService.UpgradeNotebookRuntime.
UploadModelOperationMetadata
Details of ModelService.UploadModel operation.
UploadModelRequest
Request message for ModelService.UploadModel.
UploadModelResponse
Response message of ModelService.UploadModel operation.
UploadRagFileConfig
Config for uploading RagFile.
UploadRagFileRequest
Request message for VertexRagDataService.UploadRagFile.
UploadRagFileResponse
Response message for VertexRagDataService.UploadRagFile.
UpsertDatapointsRequest
Request message for IndexService.UpsertDatapoints
UpsertDatapointsResponse
Response message for IndexService.UpsertDatapoints
UpsertExamplesRequest
Request message for ExampleStoreService.UpsertExamples.
UpsertExamplesResponse
Response message for ExampleStoreService.UpsertExamples.
UpsertExamplesResponse_UpsertResult
The result for creating/updating a single example.
UrlContext
Tool to support URL context.
UrlContextMetadata
Metadata related to url context retrieval tool.
UrlMetadata
Context of the a single url retrieval.
UrlMetadata_UrlRetrievalStatus
Status of the url retrieval.
UserActionReference
References an API call. It contains more information about long running operation and Jobs that are triggered by the API call.
Value
Value is the value of the field.
VeoHyperParameters
Hyperparameters for Veo.
VeoHyperParameters_TuningTask
An enum defining the tuning task used for Veo.
VeoTuningSpec
Tuning Spec for Veo Model Tuning.
VertexAisearch
Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder
VertexAisearch_DataStoreSpec
Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
VertexAiSearchConfig
Config for the Vertex AI Search.
VertexRagDataService
A service for managing user data for RAG.
VertexRagService
A service for retrieving relevant contexts.
VertexRagStore
Retrieve from Vertex RAG Store for grounding.
VertexRagStore_RagResource
The definition of the Rag resource.
VideoMetadata
Metadata describes the input video content.
VizierService
Vertex AI Vizier API.
VoiceConfig
The configuration for the voice to use.
WorkerPoolSpec
Represents the spec of a worker pool in a job.
WriteFeatureValuesPayload
Contains Feature values to be written for a specific entity.
WriteFeatureValuesRequest
Request message for FeaturestoreOnlineServingService.WriteFeatureValues.
WriteFeatureValuesResponse
Response message for FeaturestoreOnlineServingService.WriteFeatureValues.
WriteTensorboardExperimentDataRequest
Request message for TensorboardService.WriteTensorboardExperimentData.
WriteTensorboardExperimentDataResponse
Response message for TensorboardService.WriteTensorboardExperimentData.
WriteTensorboardRunDataRequest
Request message for TensorboardService.WriteTensorboardRunData.
WriteTensorboardRunDataResponse
Response message for TensorboardService.WriteTensorboardRunData.
XraiAttribution
An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825