ExplanationMetadata_InputMetadata class final
Metadata of the input of a feature.
Fields other than
InputMetadata.input_baselines
are applicable only for Models that are using Vertex AI-provided images for
Tensorflow.
- Inheritance
-
- Object
- ProtoMessage
- ExplanationMetadata_InputMetadata
Constructors
-
ExplanationMetadata_InputMetadata({List<
Value> inputBaselines = const [], String inputTensorName = '', ExplanationMetadata_InputMetadata_Encoding encoding = ExplanationMetadata_InputMetadata_Encoding.$default, String modality = '', ExplanationMetadata_InputMetadata_FeatureValueDomain? featureValueDomain, String indicesTensorName = '', String denseShapeTensorName = '', List<String> indexFeatureMapping = const [], String encodedTensorName = '', List<Value> encodedBaselines = const [], ExplanationMetadata_InputMetadata_Visualization? visualization, String groupName = ''}) - ExplanationMetadata_InputMetadata.fromJson(Object? j)
-
factory
Properties
- denseShapeTensorName → String
-
Specifies the shape of the values of the input if the input is a sparse
representation. Refer to Tensorflow documentation for more details:
https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
final
-
encodedBaselines
→ List<
Value> -
A list of baselines for the encoded tensor.
final
- encodedTensorName → String
-
Encoded tensor is a transformation of the input tensor. Must be provided
if choosing
google.cloud.aiplatform.v1beta1.ExplanationParameters.integrated_gradients_attributionorgoogle.cloud.aiplatform.v1beta1.ExplanationParameters.xrai_attributionand the input tensor is not differentiable.final - encoding → ExplanationMetadata_InputMetadata_Encoding
-
Defines how the feature is encoded into the input tensor. Defaults to
IDENTITY.
final
- featureValueDomain → ExplanationMetadata_InputMetadata_FeatureValueDomain?
-
The domain details of the input feature value. Like min/max, original
mean or standard deviation if normalized.
final
- groupName → String
-
Name of the group that the input belongs to. Features with the same group
name will be treated as one feature when computing attributions. Features
grouped together can have different shapes in value. If provided, there
will be one single attribution generated in
Attribution.feature_attributions, keyed by the group name.final - hashCode → int
-
The hash code for this object.
no setterinherited
-
indexFeatureMapping
→ List<
String> -
A list of feature names for each index in the input tensor.
Required when the input
InputMetadata.encodingis BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.final - indicesTensorName → String
-
Specifies the index of the values of the input tensor.
Required when the input tensor is a sparse representation. Refer to
Tensorflow documentation for more details:
https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
final
-
inputBaselines
→ List<
Value> -
Baseline inputs for this feature.
final
- inputTensorName → String
-
Name of the input tensor for this feature. Required and is only
applicable to Vertex AI-provided images for Tensorflow.
final
- modality → String
-
Modality of the feature. Valid values are: numeric, image. Defaults to
numeric.
final
- qualifiedName → String
-
The fully qualified name of this message, i.e.,
google.protobuf.Durationorgoogle.rpc.ErrorInfo.finalinherited - runtimeType → Type
-
A representation of the runtime type of the object.
no setterinherited
- visualization → ExplanationMetadata_InputMetadata_Visualization?
-
Visualization configurations for image explanation.
final
Methods
-
noSuchMethod(
Invocation invocation) → dynamic -
Invoked when a nonexistent method or property is accessed.
inherited
-
toJson(
) → Object -
override
-
toString(
) → String -
A string representation of this object.
override
Operators
-
operator ==(
Object other) → bool -
The equality operator.
inherited
Constants
- fullyQualifiedName → const String