ModelMonitoringSchema class final
The Model Monitoring Schema definition.
- Inheritance
-
- Object
- ProtoMessage
- ModelMonitoringSchema
Constructors
-
ModelMonitoringSchema({List<
ModelMonitoringSchema_FieldSchema> featureFields = const [], List<ModelMonitoringSchema_FieldSchema> predictionFields = const [], List<ModelMonitoringSchema_FieldSchema> groundTruthFields = const []}) - ModelMonitoringSchema.fromJson(Object? j)
-
factory
Properties
-
featureFields
→ List<
ModelMonitoringSchema_FieldSchema> -
Feature names of the model. Vertex AI will try to match the features from
your dataset as follows:
final
-
groundTruthFields
→ List<
ModelMonitoringSchema_FieldSchema> -
Target /ground truth names of the model.
final
- hashCode → int
-
The hash code for this object.
no setterinherited
-
predictionFields
→ List<
ModelMonitoringSchema_FieldSchema> -
Prediction output names of the model. The requirements are the same as the
feature_fields. For AutoML Tables, the prediction output name presented in schema will be:predicted_{target_column}, thetarget_columnis the one you specified when you train the model. For Prediction output drift analysis:final - qualifiedName → String
-
The fully qualified name of this message, i.e.,
google.protobuf.Durationorgoogle.rpc.ErrorInfo.finalinherited - runtimeType → Type
-
A representation of the runtime type of the object.
no setterinherited
Methods
-
noSuchMethod(
Invocation invocation) → dynamic -
Invoked when a nonexistent method or property is accessed.
inherited
-
toJson(
) → Object -
override
-
toString(
) → String -
A string representation of this object.
override
Operators
-
operator ==(
Object other) → bool -
The equality operator.
inherited
Constants
- fullyQualifiedName → const String