rag 1.0.0
rag: ^1.0.0 copied to clipboard
Retrieval Augmented Generation for Agentic
RAG #
Do rag ez
void main() async {
RagAgent agent = RagAgent(
user: "dan",
llm: OpenAIConnector(apiKey: openaiKey).connect(ChatModel.openai4_1),
chatProvider: MemoryChatProvider(
messages: [
// Initial system message
Message.system(
"You are a helpful assistant. You retrieve records about the patient 'Jane Doe' for caregivers. You will need to access data before you can answer the caregivers questions.",
),
],
),
vectorSpace: PineconeVectorSpace(
namespace: "<some namespace>",
host: "https://name-xxx.pinecone.io",
apiKey: pineconeKey,
),
);
await agent.addMessage(Message.user("What is the patients date of birth?"));
AgentMessage answer = await agent.rag();
/// Show output of model
for (Message message in await agent.readMessages()) {
print(
"${message.runtimeType.toString().replaceAll("Message", "")}: ${message.content}",
);
}
}