ExplanationMetadata_InputMetadata_Encoding class final
Defines how a feature is encoded. Defaults to IDENTITY.
- Inheritance
-
- Object
- ProtoEnum
- ExplanationMetadata_InputMetadata_Encoding
Constructors
- ExplanationMetadata_InputMetadata_Encoding(String value)
-
const
- ExplanationMetadata_InputMetadata_Encoding.fromJson(String json)
-
factory
Properties
- hashCode → int
-
The hash code for this object.
no setterinherited
- isNotDefault → bool
-
no setter
- runtimeType → Type
-
A representation of the runtime type of the object.
no setterinherited
- value → String
-
finalinherited
Methods
-
noSuchMethod(
Invocation invocation) → dynamic -
Invoked when a nonexistent method or property is accessed.
inherited
-
toJson(
) → String -
inherited
-
toString(
) → String -
A string representation of this object.
override
Operators
-
operator ==(
Object other) → bool -
The equality operator.
inherited
Constants
- $default → const ExplanationMetadata_InputMetadata_Encoding
- The default value for ExplanationMetadata_InputMetadata_Encoding.
- bagOfFeatures → const ExplanationMetadata_InputMetadata_Encoding
-
The tensor represents a bag of features where each index maps to
a feature.
InputMetadata.index_feature_mappingmust be provided for this encoding. For example: - bagOfFeaturesSparse → const ExplanationMetadata_InputMetadata_Encoding
-
The tensor represents a bag of features where each index maps to a
feature. Zero values in the tensor indicates feature being
non-existent.
InputMetadata.index_feature_mappingmust be provided for this encoding. For example: - combinedEmbedding → const ExplanationMetadata_InputMetadata_Encoding
-
The tensor is encoded into a 1-dimensional array represented by an
encoded tensor.
InputMetadata.encoded_tensor_namemust be provided for this encoding. For example: - concatEmbedding → const ExplanationMetadata_InputMetadata_Encoding
-
Select this encoding when the input tensor is encoded into a
2-dimensional array represented by an encoded tensor.
InputMetadata.encoded_tensor_namemust be provided for this encoding. The first dimension of the encoded tensor's shape is the same as the input tensor's shape. For example: - encodingUnspecified → const ExplanationMetadata_InputMetadata_Encoding
- Default value. This is the same as IDENTITY.
- identity → const ExplanationMetadata_InputMetadata_Encoding
- The tensor represents one feature.
- indicator → const ExplanationMetadata_InputMetadata_Encoding
-
The tensor is a list of binaries representing whether a feature exists
or not (1 indicates existence).
InputMetadata.index_feature_mappingmust be provided for this encoding. For example: